• IEEE Trans Biomed Eng · Apr 2005

    Comparative Study

    Effects of radiofrequency energy on human chondromalacic cartilage: an assessment of insulation material properties.

    • Marie L Meyer, Yan Lu, and Mark D Markel.
    • Comparative Orthopaedic Research Laboratory, Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA. mariemeyer8@hotmail.com
    • IEEE Trans Biomed Eng. 2005 Apr 1; 52 (4): 702-10.

    AbstractThe objective of this study was to establish guidelines for the selection of an insulation material used to surround the electrode of radiofrequency energy (RFE) probes used for thermal chondroplasty. These guidelines were established by identifying which insulation materials resulted in the least amount of chondrocyte death while smoothing the surface of chondromalacic cartilage. RFE causes electrolyte oscillation and molecular friction in the tissue to heat it and subsequently smooth the surface. Material properties investigated included the coefficient of thermal expansion (CTE), thermal conductivity (TC), and volume resistivity (VR). Fresh human chondromalacic cartilage samples of Outerbridge grades II and III were obtained from patients undergoing total knee arthroplasty. Stiffness measurements were taken pretreatment and posttreatment. RFE was applied to a 1-cm2 area for 15 s in a paintbrush treatment pattern. The insulation materials evaluated included Macor (decrease CTE, decrease TC, increase VR; in relation to CTE = 10 x 10(-6)/degrees C at 20 degrees C, TC = 3 W/mK, VR=1 x 10(14) ohm x cm), zirconia toughened alumina (ZTA) and 99.5% alumina (decrease CTE, increase TC, increase VR), aluminum nitride (decrease CTE, increase TC, decrease VR), Teflon (PTFE) (increase CTE, decrease TC, increase VR), partially stabilized zirconia (YTZP) (decrease CTE, decrease TC, decrease VR), and Ultem (increase CTE, decrease TC, decrease VR). There were no significant differences between pretreatment and posttreatment stiffness of the cartilage for any material investigated. Subjectively scored scanning electron microscopy (SEM) images revealed that the surfaces of all samples treated with RFE were relatively smooth with melted fronds. Prototype probes made with Macor, 99.5% alumina, and ZTA had TC < or = 30 W/mol x K and resulted in a mean of 35% less cell death (176+/-56 microm, 130+/-48 microm, and 114+/-33 microm, respectively) than aluminum nitride, PTFE, and YTZP (246+/-68 microm, 231+/-108 microm, and 195+/-89 microm, respectively). Macor, 99.5% alumina, and ZTA prototype probes all had VR > or = 1 x 10(14) ohm x cm and resulted in a mean 37% less cell death than aluminum nitride or YTZP. There was no apparent relationship between CTE and the depth of chondrocyte death.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…