• J. Cell. Biochem. · Mar 2019

    Total flavonoids from Smilax glabra Roxb blocks epithelial-mesenchymal transition and inhibits renal interstitial fibrosis by targeting miR-21/PTEN signaling.

    • Qihan Luo, Zhaowei Cai, Jue Tu, Yun Ling, Dejun Wang, and Yueqin Cai.
    • Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
    • J. Cell. Biochem. 2019 Mar 1; 120 (3): 3861-3873.

    BackgroundSmilax glabra Roxb, a traditional Chinese herb, has been widely used in folk medicine. The current study was performed to investigate the protective effect of S. glabra Roxb extract, pure total flavonoids from Smilax glabra Roxb (PTFS), on renal interstitial fibrosis (RIF) and its underlying mechanism.MethodsFirst, a surgical model of unilateral ureteral obstruction was established in rats to induce RIF. Then, rats were grouped and treated with PTFS at different concentration. Second, HK-2 cells underwent an epithelial-mesenchymal transition (EMT) by the addition of transforming growth factor-β1 (TGF-β1). Additionally, HK-2 cells after inducing for EMT were transfected with microRNA-21 (miR-21) mimic or inhibitor. These HK-2 cells were grouped and treated with PTFS at different concentration. Finally, real-time polymerase chain reaction and Western blot analysis were performed to detect the expression of possible signaling factor involved in RIF in renal tissues or HK-2 cells after PTFS treatment.ResultsIn vivo and in vitro experiments indicated that PTFS treatment could decrease the expression of α-smooth muscle actin (α-SMA; mesenchymal marker) and increase the expression of E-cadherin (epithelial marker) in both messenger RNA and protein level. Moreover, PTFS also attenuated the expression of TGF-β1/Smad signaling in both renal tissues and HK-2 cells that underwent EMT. Overexpression or inhibition of miR-21 in HK-2 cells activated or blocked the PI3K/Akt signaling via targeting phosphatase and tension homolog (PTEN), and then promoted or suppressed the progress of TGF-β1-induced EMT by regulating the expression of α-SMA and E-cadherin. Furthermore, PTFS treatment inhibited TGF-β1-induced EMT progress by blocking miR-21/PTEN/PI3K/Akt signaling.ConclusionPTFS has strong anti-EMT and antifibrosis effects both in vitro and in vivo. The mechanism underlying these effects may be related to inhibition of TGF-β1/Smad, and their downstream miR-21/PTEN signaling, leading to blocks of EMT process during RIF.© 2018 Wiley Periodicals, Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.