• J. Allergy Clin. Immunol. · Feb 2015

    Pioglitazone restores phagocyte mitochondrial oxidants and bactericidal capacity in chronic granulomatous disease.

    • Ruby F Fernandez-Boyanapalli, S Courtney Frasch, Stacey M Thomas, Kenneth C Malcolm, Michael Nicks, Ronald J Harbeck, Claudia V Jakubzick, Raphael Nemenoff, Peter M Henson, Steven M Holland, and Donna L Bratton.
    • Department of Pediatrics, National Jewish Health, Denver, Colo.
    • J. Allergy Clin. Immunol. 2015 Feb 1; 135 (2): 517-527.e12.

    BackgroundDeficient production of reactive oxygen species (ROS) by the phagocyte nicotinamide adenine dinucleotide (NADPH) oxidase in patients with chronic granulomatous disease (CGD) results in susceptibility to certain pathogens secondary to impaired oxidative killing and mobilization of other phagocyte defenses. Peroxisome proliferator-activated receptor (PPAR) γ agonists, including pioglitazone, approved for type 2 diabetes therapy alter cellular metabolism and can heighten ROS production. It was hypothesized that pioglitazone treatment of gp91(phox-/-) mice, a murine model of human CGD, would enhance phagocyte oxidant production and killing of Staphylococcus aureus, a significant pathogen in patients with this disorder.ObjectivesWe sought to determine whether pioglitazone treatment of gp91(phox-/-) mice enhanced phagocyte oxidant production and host defense.MethodsWild-type and gp91(phox-/-) mice were treated with the PPARγ agonist pioglitazone, and phagocyte ROS and killing of S aureus were investigated.ResultsAs demonstrated by 3 different ROS-sensing probes, short-term treatment of gp91(phox-/-) mice with pioglitazone enhanced stimulated ROS production in neutrophils and monocytes from blood and neutrophils and inflammatory macrophages recruited to tissues. Mitochondria were identified as the source of ROS. Findings were replicated in human monocytes from patients with CGD after ex vivo pioglitazone treatment. Importantly, although mitochondrial (mt)ROS were deficient in gp91(phox-/-) phagocytes, their restoration with treatment significantly enabled killing of S aureus both ex vivo and in vivo.ConclusionsTogether, the data support the hypothesis that signaling from the NADPH oxidase under normal circumstances governs phagocyte mtROS production and that such signaling is lacking in the absence of a functioning phagocyte oxidase. PPARγ agonism appears to bypass the need for the NADPH oxidase for enhanced mtROS production and partially restores host defense in CGD.Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…