• IEEE Trans Med Imaging · Jan 2004

    Comparative Study

    Clustered components analysis for functional MRI.

    • Sea Chen, Charles A Bouman, and Mark J Lowe.
    • Division of Imaging Sciences, Department of Radiology, Indiana University, School of Medicine, Indianapolis, IN, USA. sechen@iupui.edu
    • IEEE Trans Med Imaging. 2004 Jan 1; 23 (1): 85-98.

    AbstractA common method of increasing hemodynamic response (SNR) in functional magnetic resonance imaging (fMRI) is to average signal timecourses across voxels. This technique is potentially problematic because the hemodynamic response may vary across the brain. Such averaging may destroy significant features in the temporal evolution of the fMRI response that stem from either differences in vascular coupling to neural tissue or actual differences in the neural response between two averaged voxels. Two novel techniques are presented in this paper in order to aid in an improved SNR estimate of the hemodynamic response while preserving statistically significant voxel-wise differences. The first technique is signal subspace estimation for periodic stimulus paradigms that involves a simple thresholding method. This increases SNR via dimensionality reduction. The second technique that we call clustered components analysis is a novel amplitude-independent clustering method based upon an explicit statistical data model. It includes an unsupervised method for estimating the number of clusters. Our methods are applied to simulated data for verification and comparison to other techniques. A human experiment was also designed to stimulate different functional cortices. Our methods separated hemodynamic response signals into clusters that tended to be classified according to tissue characteristics.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.