• Medical image analysis · Jul 2014

    Joint maximum likelihood estimation of activation and Hemodynamic Response Function for fMRI.

    • Negar Bazargani and Aria Nosratinia.
    • Department of Electrical Engineering, University of Texas at Dallas, Richardson, TX 75080, USA. Electronic address: negar.bazargani@utdallas.edu.
    • Med Image Anal. 2014 Jul 1; 18 (5): 711-24.

    AbstractBlood Oxygen Level Dependent (BOLD) functional magnetic resonance imaging (fMRI) maps the brain activity by measuring blood oxygenation level, which is related to brain activity via a temporal impulse response function known as the Hemodynamic Response Function (HRF). The HRF varies from subject to subject and within areas of the brain, therefore a knowledge of HRF is necessary for accurately computing voxel activations. Conversely a knowledge of active voxels is highly beneficial for estimating the HRF. This work presents a joint maximum likelihood estimation of HRF and activation based on low-rank matrix approximations operating on regions of interest (ROI). Since each ROI has limited data, a smoothing constraint on the HRF is employed via Tikhonov regularization. The method is analyzed under both white noise and colored noise. Experiments with synthetic data show that accurate estimation of the HRF is possible with this method without prior assumptions on the exact shape of the HRF. Further experiments involving real fMRI experiments with auditory stimuli are used to validate the proposed method.Copyright © 2014 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.