• Bba Mol Basis Dis · Oct 2017

    Dysregulation of microRNA biogenesis in the small intestine after ethanol and burn injury.

    • Niya L Morris, Adam M Hammer, Abigail R Cannon, Robin C Gagnon, Xiaoling Li, and Mashkoor A Choudhry.
    • Alcohol Research Program, Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Health Sciences Campus, Maywood, IL 60153, USA.; Integrative Cell Biology Program, Loyola University Chicago Health Sciences Campus, Maywood, IL 60153, USA. Electronic address: nmorris3@luc.edu.
    • Bba Mol Basis Dis. 2017 Oct 1; 1863 (10 Pt B): 2645-2653.

    AbstractEthanol exposure at the time of burn injury is a major contributor to post-burn pathogenesis. Many of the adverse effects associated with ethanol and burn injury are linked to an impaired intestinal barrier. The combined insult causes intestinal inflammation, resulting in tissue damage, altered tight junction expression, and increased intestinal permeability. MicroRNAs play a critical role in maintaining intestinal homeostasis including intestinal inflammation and barrier function. Specifically, miR-150 regulates inflammatory mediators which can contribute to gut barrier disruption. The present study examined whether ethanol and burn injury alter expression of microRNA processing enzymes (Drosha, Dicer, and Argonaute-2) and miR-150 in the small intestine. Male mice were gavaged with ethanol (~2.9g/kg) 4h prior to receiving a ~12.5% total body surface area full thickness burn. One or three days after injury, mice were euthanized and small intestinal epithelial cells (IECs) were isolated and analyzed for expression of microRNA biogenesis components and miR-150. Dicer mRNA and protein levels were not changed following the combined insult. Drosha and Argonaute-2 mRNA and protein levels were significantly reduced in IECs one day after injury; which accompanied reduced miR-150 expression. To further determine the role of miR-150 in intestinal inflammation, young adult mouse colonocytes were transfected with a miR-150 plasmid and stimulated with LPS (100ng/ml). miR-150 overexpression significantly reduced IL-6 and KC protein levels compared to vector control cells challenged with LPS. These results suggest that altered microRNA biogenesis and associated decrease in miR-150 likely contribute to increased intestinal inflammation following ethanol and burn injury.Copyright © 2017 Elsevier B.V. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.