• Eur. J. Nucl. Med. Mol. Imaging · Apr 2003

    Comparative Study

    In vitro and in vivo study of 99mTc-MIBI encapsulated in PEG-liposomes: a promising radiotracer for tumour imaging.

    • Hayet Belhaj-Tayeb, Dominique Briane, Jackie Vergote, Suchart Kothan, Gérard Léger, Saad-Eddine Bendada, Mojdeh Tofighi, Feyzi Tamgac, An Cao, and Jean-Luc Moretti.
    • Laboratoire de radiopharmacologie et traitement de l'image, UPRES 2360, Université de Paris Nord, 74 rue Marcel Cachin, 93017 Bobigny cedex, France.
    • Eur. J. Nucl. Med. Mol. Imaging. 2003 Apr 1; 30 (4): 502-9.

    AbstractEncapsulation of technetium-99m sestamibi ((99m)Tc-MIBI) in polyethyleneglycol-liposomes ((99m)Tc-MIBI-PEG-liposomes) could extend the duration of its circulation in blood and alter its biodistribution, enabling its concentration in tumours to be increased. An original method to encapsulate (99m)Tc-MIBI in PEG-liposomes is described. The (99m)Tc-MIBI-PEG-liposomes were compared with free (99m)Tc-MIBI with respect to (a) tumour availability (b) ability to distinguish between chemotherapy-sensitive and -resistant cells and (c) uptake ratio in tumour imaging. PEG-liposomal systems composed of distearoylphosphatidylcholine/cholesterol/PEG(2000)-distearoyl phosphatidylethanolamine and lissamine-rhodamine B-labelled liposomes were used. The encapsulation of (99m)Tc-MIBI in liposomes was achieved using the K(+) diffusion potential method. We compared the uptake of free versus encapsulated (99m)Tc-MIBI by sensitive and resistant erythroleukaemia (K562) and breast tumour (MCF-7ras) cells. To assess the internalisation of these liposomes into cells, rhodamine B-labelled PEG-liposomes were used and visualised by fluorescence microscopy. Biodistribution and imaging characteristics of encapsulated and free radiotracer were determined in rats and tumour-bearing nude mice. The efficiency of (99m)Tc-MIBI encapsulation in PEG-liposomes was 50+/-5%. Use of (99m)Tc-MIBI-PEG-liposomes did not impair the ability of this tracer to distinguish between chemotherapy-sensitive and -resistant tumour cells; the percentage of radioactivity accumulated in the sensitive K562 cells was 1.24+/-0.04%, as compared with 0.41+/-0.04% in the resistant K562 cells. One hour post injection in rats, PEG-liposomes showed a ten times higher activity in blood than free (99m)Tc-MIBI, whereas activity of free (99m)Tc-MIBI in kidneys and bladder was markedly higher than that of encapsulated (99m)Tc-MIBI, indicating faster clearance of the free radiotracer. In the (MCF7-ras)-bearing nude mice, PEG-liposome uptake in tumour was two times that of free (99m)Tc-MIBI. Summarising, the (99m)Tc-MIBI-PEG-liposomes demonstrated a longer blood circulation time, enabled distinction between chemotherapy-sensitive and -resistant cells and improved tumour to background contrast in in vivo imaging. (99m)Tc-MIBI-PEG-liposomes therefore show promising potential for tumour imaging.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…