• IEEE Trans Med Imaging · Jan 2006

    Comparative Study

    Unwrapping of MR phase images using a Markov random field model.

    • Lei Ying, Zhi-Pei Liang, David C Munson, Ralf Koetter, and Brendan J Frey.
    • Department of Electrical Engineering and Computer Science, University of Wisconsin, Milwaukee, WI 53201, USA. leiying@uwm.edu
    • IEEE Trans Med Imaging. 2006 Jan 1; 25 (1): 128-36.

    AbstractPhase unwrapping is an important problem in many magnetic resonance imaging applications, such as field mapping and flow imaging. The challenge in two-dimensional phase unwrapping lies in distinguishing jumps due to phase wrapping from those due to noise and/or abrupt variations in the actual function. This paper addresses this problem using a Markov random field to model the true phase function, whose parameters are determined by maximizing the a posteriori probability. To reduce the computational complexity of the optimization procedure, an efficient algorithm is also proposed for parameter estimation using a series of dynamic programming connected by the iterated conditional modes. The proposed method has been tested with both simulated and experimental data, yielding better results than some of the state-of-the-art method (e.g., the popular least-squares method) in handling noisy phase images with rapid phase variations.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…