• J. Appl. Physiol. · Jul 2007

    Altered Ca2+ handling and myofilament desensitization underlie cardiomyocyte performance in normothermic and hyperthermic heat-acclimated rat hearts.

    • Omer Cohen, Hifa Kanana, Ronen Zoizner, Chaya Gross, Uri Meiri, Michael D Stern, Gary Gerstenblith, and Michal Horowitz.
    • Laboratory of Environmental Physiology, Faculty of Dental Medicine, Hadassah Medical Center, The Hebrew University, Jerusalem 91120, Israel.
    • J. Appl. Physiol. 2007 Jul 1; 103 (1): 266-75.

    AbstractHeat acclimation (AC) improves cardiac mechanical and metabolic performance. Using cardiomyocytes and isolated hearts from 30-day and 2-day acclimated rats (AC and AC-2d, 34 degrees C), we characterized cellular contractile mechanisms under normothermic (37 degrees C) and hyperthermic (39-42 degrees C) conditions. To determine contractile responses, Ca2+ transients (Ca2+ T), sarcoplasmic reticulum (SR) Ca2+ pool size (fura-2/indo-1 fluorescence), force generation [amplitude systolic motion (ASM)], L-type Ca2+ channels [dihydropyridine receptor (DHPR)], ryanodine receptors (RyRs), and total (PLBt) and phosphorylated phospholamban [serine phosphorylated (PLBs) and theonine phosphorylated (PLBtr)] proteins and transcripts were measured (Western blot, RT-PCR). Cardiac mechanical performance was measured using a Langendorff system. We demonstrated that AC and AC-2d increased Ca2+ T amplitude (148% and 147%, respectively) and twitch force (180% and 130%, respectively) and desensitized myofilaments, as indicated by a rightward shift in the ASM-Ca2+ relationships, despite no change in SR Ca2+ pool size. Hence, generation of higher Ca2+ T underlies greater force development in AC and AC-2d myocytes. In isolated hearts, ryanodine administration eliminated differences between AC and control (C) hearts, implying an important role for RyRs in that acclimation phase. Increased expression of DHPR and RyRs, and decreased PLBs/PLBt in AC hearts only, suggest that different pathways increase force generation in the AC-2d vs. AC myocytes. At basal beating rates, hyperthermia (39-41 degrees C) enhanced pressure generation in AC hearts. C hearts failed to restitute pressure beyond 39 degrees C. Increased beating frequency produced negative inotropic response. In C cardiomyocytes, hyperthermia elevated basal cytosolic Ca2+ and tension, Ca2+ T, and ASM. AC myocytes enhanced Ca2+ T but showed myofilament desensitization, suggesting its involvement in cardiac protection against hyperthermia. Collectively, both Ca2+ turnover and myofilament responsiveness are important adaptive acclimatory targets during normothermic and hyperthermic conditions.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.