-
- Ivan Coronado, Refaat E Gabr, and Ponnada A Narayana.
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Mult. Scler. 2021 Apr 1; 27 (4): 519-527.
ObjectiveThe aim of this study is to assess the performance of deep learning convolutional neural networks (CNNs) in segmenting gadolinium-enhancing lesions using a large cohort of multiple sclerosis (MS) patients.MethodsA three-dimensional (3D) CNN model was trained for segmentation of gadolinium-enhancing lesions using multispectral magnetic resonance imaging data (MRI) from 1006 relapsing-remitting MS patients. The network performance was evaluated for three combinations of multispectral MRI used as input: (U5) fluid-attenuated inversion recovery (FLAIR), T2-weighted, proton density-weighted, and pre- and post-contrast T1-weighted images; (U2) pre- and post-contrast T1-weighted images; and (U1) only post-contrast T1-weighted images. Segmentation performance was evaluated using the Dice similarity coefficient (DSC) and lesion-wise true-positive (TPR) and false-positive (FPR) rates. Performance was also evaluated as a function of enhancing lesion volume.ResultsThe DSC/TPR/FPR values averaged over all the enhancing lesion sizes were 0.77/0.90/0.23 using the U5 model. These values for the largest enhancement volumes (>500 mm3) were 0.81/0.97/0.04. For U2, the average DSC/TPR/FPR values were 0.72/0.86/0.31. Comparable performance was observed with U1. For all types of input, the network performance degraded with decreased enhancement size.ConclusionExcellent segmentation of enhancing lesions was observed for enhancement volume ⩾70 mm3. The best performance was achieved when the input included all five multispectral image sets.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.