• Am. J. Physiol. Renal Physiol. · Jan 2015

    PKC-α contributes to high NaCl-induced activation of NFAT5 (TonEBP/OREBP) through MAPK ERK1/2.

    • Hong Wang, Joan D Ferraris, Janet D Klein, Jeff M Sands, Maurice B Burg, and Xiaoming Zhou.
    • Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland;
    • Am. J. Physiol. Renal Physiol. 2015 Jan 15; 308 (2): F140-8.

    AbstractHigh NaCl in the renal medullary interstitial fluid powers the concentration of urine but can damage cells. The transcription factor nuclear factor of activated T cells 5 (NFAT5) activates the expression of osmoprotective genes. We studied whether PKC-α contributes to the activation of NFAT5. PKC-α protein abundance was greater in the renal medulla than in the cortex. Knockout of PKC-α reduced NFAT5 protein abundance and expression of its target genes in the inner medulla. In human embryonic kidney (HEK)-293 cells, high NaCl increased PKC-α activity, and small interfering RNA-mediated knockdown of PKC-α attenuated high NaCl-induced NFAT5 transcriptional activity. Expression of ERK1/2 protein and phosphorylation of ERK1/2 were higher in the renal inner medulla than in the cortex. Knockout of PKC-α decreased ERK1/2 phosphorylation in the inner medulla, as did knockdown of PKC-α in HEK-293 cells. Also, knockdown of ERK2 reduced high NaCl-dependent NFAT5 transcriptional activity in HEK-293 cells. Combined knockdown of PKC-α and ERK2 had no greater effect than knockdown of either alone. Knockdown of either PKC-α or ERK2 reduced the high NaCl-induced increase of NFAT5 transactivating activity. We have previously found that the high NaCl-induced increase of phosphorylation of Ser(591) on Src homology 2 domain-containing phosphatase 1 (SHP-1-S591-P) contributes to the activation of NFAT5 in cell culture, and here we found high levels of SHP-1-S591-P in the inner medulla. PKC-α has been previously shown to increase SHP-1-S591-P, which raised the possibility that PKC-α might be acting through SHP-1. However, we did not find that knockout of PKC-α in the renal medulla or knockdown in HEK-293 cells affected SHP-1-S591-P. We conclude that PKC-α contributes to high NaCl-dependent activation of NFAT5 through ERK1/2 but not through SHP-1-S591.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.