• J. Neurosci. · Feb 2009

    Neprilysin overexpression inhibits plaque formation but fails to reduce pathogenic Abeta oligomers and associated cognitive deficits in human amyloid precursor protein transgenic mice.

    • William J Meilandt, Moustapha Cisse, Kaitlyn Ho, Tiffany Wu, Luke A Esposito, Kimberly Scearce-Levie, Irene H Cheng, Gui-Qiu Yu, and Lennart Mucke.
    • Gladstone Institute of Neurological Disease, University of California, San Francisco, California 94158, USA.
    • J. Neurosci. 2009 Feb 18;29(7):1977-86.

    AbstractThe accumulation of amyloid-beta (Abeta) peptides in the brain of patients with Alzheimer's disease (AD) may arise from an imbalance between Abeta production and clearance. Overexpression of the Abeta-degrading enzyme neprilysin in brains of human amyloid precursor protein (hAPP) transgenic mice decreases overall Abeta levels and amyloid plaque burdens. Because AD-related synaptic and cognitive deficits appear to be more closely related to Abeta oligomers than to plaques, it is important to determine whether increased neprilysin activity also diminishes the levels of pathogenic Abeta oligomers and related neuronal deficits in vivo. To address this question, we crossed hAPP transgenic mice with neprilysin transgenic mice and analyzed their offspring. Neprilysin overexpression reduced soluble Abeta levels by 50% and effectively prevented early Abeta deposition in the neocortex and hippocampus. However, it did not reduce levels of Abeta trimers and Abeta*56 or improve deficits in spatial learning and memory. The differential effect of neprilysin on plaques and oligomers suggests that neprilysin-dependent degradation of Abeta affects plaques more than oligomers and that these structures may form through distinct assembly mechanisms. Neprilysin's inability to prevent learning and memory deficits in hAPP mice may be related to its inability to reduce pathogenic Abeta oligomers. Reduction of Abeta oligomers will likely be required for anti-Abeta treatments to improve cognitive functions.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.