• Ann. N. Y. Acad. Sci. · Nov 2004

    Design and preparation of a particle dynamics space flight experiment, SHIVA.

    • James D Trolinger, Drew L'Esperance, Roger H Rangel, Carlos F M Coimbra, and William K Witherow.
    • MetroLaser Inc., 2572 White Road, Irvine, CA 92614, USA. jtrolinger@metrolaserinc.com
    • Ann. N. Y. Acad. Sci. 2004 Nov 1; 1027: 550-66.

    AbstractThis paper describes the flight experiment, supporting ground science, and the design rationale for a project on spaceflight holography investigation in a virtual apparatus (SHIVA). SHIVA is a fundamental study of particle dynamics in fluids in microgravity. Gravitation effects and steady Stokes drag often dominate the equations of motion of a particle in a fluid and consequently microgravity provides an ideal environment in which to study the other forces, such as the pressure and viscous drag and especially the Basset history force. We have developed diagnostic recording methods using holography to save all of the particle field optical characteristics, essentially allowing the experiment to be transferred from space back to Earth in what we call the "virtual apparatus" for microgravity experiments on Earth. We can quantify precisely the three-dimensional motion of sets of particles, allowing us to test and apply new analytic solutions developed by members of the team. In addition to employing microgravity to augment the fundamental study of these forces, the resulting data will allow us to quantify and understand the ISS environment with great accuracy. This paper shows how we used both experiment and theory to identify and resolve critical issues and to produce an optimal experimental design that exploits microgravity for the study. We examined the response of particles of specific gravity from 0.1 to 20, with radii from 0.2 to 2 mm, to fluid oscillation at frequencies up to 80 Hz with amplitudes up to 200 microns. To observe some of the interesting effects predicted by the new solutions requires the precise location of the position of a particle in three dimensions. To this end we have developed digital holography algorithms that enable particle position location to a small fraction of a pixel in a CCD array. The spaceflight system will record holograms both on film and electronically. The electronic holograms can be downlinked providing real-time data, essentially acting like a remote window into the ISS experimental chamber. Ground experiments have provided input to a flight system design that can meet the requirements for a successful experiment on ISS. Moreover the ground experiments have provided a definitive, quantitative observation of the Basset history force over a wide range of conditions. Results of the ground experiments, the flight experiment design, preliminary flight hardware design, and data analysis procedures are reported.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.