• Int. J. Radiat. Oncol. Biol. Phys. · Mar 2008

    Proton magnetic resonance spectroscopic imaging in newly diagnosed glioblastoma: predictive value for the site of postradiotherapy relapse in a prospective longitudinal study.

    • Anne Laprie, Isabelle Catalaa, Emmanuelle Cassol, Tracy R McKnight, Delphine Berchery, Delphine Marre, Jean-Marc Bachaud, Isabelle Berry, and Elizabeth Cohen-Jonathan Moyal.
    • Department of Radiation Oncology, Institut Claudius Regaud, Toulouse, France. Laprie.Anne@claudiusregaud.fr
    • Int. J. Radiat. Oncol. Biol. Phys. 2008 Mar 1; 70 (3): 773-81.

    PurposeTo investigate the association between magnetic resonance spectroscopic imaging (MRSI)-defined, metabolically abnormal tumor regions and subsequent sites of relapse in data from patients treated with radiotherapy (RT) in a prospective clinical trial.Methods And MaterialsTwenty-three examinations were performed prospectively for 9 patients with newly diagnosed glioblastoma multiforme studied in a Phase I trial combining Tipifarnib and RT. The patients underwent magnetic resonance imaging (MRI) and MRSI before treatment and every 2 months until relapse. The MRSI data were categorized by the choline (Cho)/N-acetyl-aspartate (NAA) ratio (CNR) as a measure of spectroscopic abnormality. CNRs corresponding to T1 and T2 MRI for 1,207 voxels were evaluated before RT and at recurrence.ResultsBefore treatment, areas of CNR2 (CNR > or =2) represented 25% of the contrast-enhancing (T1CE) regions and 10% of abnormal T2 regions outside T1CE (HyperT2). The presence of CNR2 was often an early indicator of the site of relapse after therapy. In fact, 75% of the voxels within the T1CE+CNR2 before therapy continued to exhibit CNR2 at relapse, compared with 22% of the voxels within the T1CE with normal CNR (p < 0.05). The location of new contrast enhancement with CNR2 corresponded in 80% of the initial HyperT2+CNR2 vs. 20.7% of the HyperT2 voxels with normal CNR (p < 0.05).ConclusionMetabolically active regions represented a small percentage of pretreatment MRI abnormalities and were predictive for the site of post-RT relapse. The incorporation of MRSI data in the definition of RT target volumes for selective boosting may be a promising avenue leading to increased local control of glioblastomas.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…