• IEEE Trans Biomed Eng · Nov 2009

    A Bayesian clustering method for tracking neural signals over successive intervals.

    • Michael T Wolf and Joel W Burdick.
    • Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA 91125, USA. wolf@jpl.nasa.gov
    • IEEE Trans Biomed Eng. 2009 Nov 1; 56 (11): 2649-59.

    AbstractThis paper introduces a new, unsupervised method for sorting and tracking the action potentials of individual neurons in multiunit extracellular recordings. Presuming the data are divided into short, sequential recording intervals, the core of our strategy relies upon an extension of a traditional mixture model approach that incorporates clustering results from the preceding interval in a Bayesian manner, while still allowing for signal nonstationarity and changing numbers of recorded neurons. As a natural byproduct of the sorting method, current and prior signal clusters can be matched over time in order to track persisting neurons. We also develop techniques to use prior data to appropriately seed the clustering algorithm and select the model class. We present results in a principal components space; however, the algorithm may be applied in any feature space where the distribution of a neuron's spikes may be modeled as Gaussian. Applications of this signal classification method to recordings from macaque parietal cortex show that it provides significantly more consistent clustering and tracking results than traditional methods based on expectation-maximization optimization of mixture models. This consistent tracking ability is crucial for intended applications of the method.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.