• IEEE Trans Med Imaging · May 2006

    Method to correct intensity inhomogeneity in MR images for atherosclerosis characterization.

    • Olivier Salvado, Claudia Hillenbrand, Shaoxiang Zhang, and David L Wilson.
    • Department of Biomedical Engineering, Case western Reserve University, 10900 Euclid Ave., Cleveland, OH 44122, USA. olivier.salvado@case.edu
    • IEEE Trans Med Imaging. 2006 May 1; 25 (5): 539-52.

    AbstractWe are developing methods to characterize atherosclerotic disease in human carotid arteries using multiple MR images having different contrast mechanisms (T1W, T2W, PDW). To enable the use of voxel gray values for interpretation of disease, we created a new method, local entropy minimization with a bicubic spline model (LEMS), to correct the severe (approximately 80%) intensity inhomogeneity that arises from the surface coil array. This entropy-based method does not require classification and robustly addresses some problems that are more severe than those found in brain imaging, including noise, steep bias field, sensitivity of artery wall voxels to edge artifacts, and signal voids near the artery wall. Validation studies were performed on a synthetic digital phantom with realistic intensity inhomogeneity, a physical phantom roughly mimicking the neck, and patient carotid artery images. We compared LEMS to a modified fuzzy c-means segmentation based method (mAFCM), and a linear filtering method (LINF). Following LEMS correction, skeletal muscles in patient images were relatively isointense across the field of view. In the physical phantom, LEMS reduced the variation in the image to 1.9% and across the vessel wall region to 2.5%, a value which should be sufficient to distinguish plaque tissue types, based on literature measurements. In conclusion, we believe that the correction method shows promise for aiding human and computerized tissue classification from MR signal intensities.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.