-
- Joanna M Stephen, Camilla Halewood, Christoph Kittl, Steve R Bollen, Andy Williams, and Andrew A Amis.
- Biomechanics Group, Mechanical Engineering Department, Imperial College London, London, UK.
- Am J Sports Med. 2016 Feb 1; 44 (2): 400-8.
BackgroundInjury to the posteromedial meniscocapsular junction has been identified after anterior cruciate ligament (ACL) rupture; however, there is a lack of objective evidence investigating how this affects knee kinematics or whether increased laxity can be restored by repair. Such injury is often overlooked at surgery, with possible compromise to results.Hypotheses(1) Sectioning the posteromedial meniscocapsular junction in an ACL-deficient knee will result in increased anterior tibial translation and rotation. (2) Isolated ACL reconstruction in the presence of a posteromedial meniscocapsular junction lesion will not restore intact knee laxity. (3) Repair of the posteromedial capsule at the time of ACL reconstruction will reduce tibial translation and rotation to normal. (4) These changes will be clinically detectable.Study DesignControlled laboratory study.MethodsNine cadaveric knees were mounted in a test rig where knee kinematics were recorded from 0° to 100° of flexion by use of an optical tracking system. Measurements were recorded with the following loads: 90-N anterior-posterior tibial forces, 5-N·m internal-external tibial rotation torques, and combined 90-N anterior force and 5-N·m external rotation torque. Manual Rolimeter readings of anterior translation were taken at 30° and 90°. The knees were tested in the following conditions: intact, ACL deficient, ACL deficient and posteromedial meniscocapsular junction sectioned, ACL deficient and posteromedial meniscocapsular junction repaired, ACL patellar tendon reconstruction with posteromedial meniscocapsular junction repair, and ACL reconstructed and capsular lesion re-created. Statistical analysis used repeated-measures analysis of variance and post hoc paired t tests with Bonferroni correction.ResultsTibial anterior translation and external rotation were both significantly increased compared with the ACL-deficient knee after posterior meniscocapsular sectioning (P < .05). These parameters were restored after ACL reconstruction and meniscocapsular lesion repair (P > .05).ConclusionAnterior and external rotational laxities were significantly increased after sectioning of the posteromedial meniscocapsular junction in an ACL-deficient knee. These were not restored after ACL reconstruction alone but were restored with ACL reconstruction combined with posterior meniscocapsular repair. Tibial anterior translation changes were clinically detectable by use of the Rolimeter.Clinical RelevanceThis study suggests that unrepaired posteromedial meniscocapsular lesions will allow abnormal meniscal and tibiofemoral laxity to persist postoperatively, predisposing the knee to meniscal and articular damage.© 2015 The Author(s).
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.