• Am J Sports Med · Nov 2019

    Effect of Meniscal Ramp Lesion Repair on Knee Kinematics, Bony Contact Forces, and In Situ Forces in the Anterior Cruciate Ligament.

    • Jan-Hendrik Naendrup, Thomas R Pfeiffer, Calvin Chan, Kanto Nagai, João V Novaretti, Andrew J Sheean, Sven T Shafizadeh, Richard E Debski, and Volker Musahl.
    • Orthopaedic Robotics Laboratory, Department of Orthopaedic Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
    • Am J Sports Med. 2019 Nov 1; 47 (13): 3195-3202.

    BackgroundMeniscal ramp lesions are possible concomitant injuries in cases of anterior cruciate ligament (ACL) deficiency. Although recent studies have investigated the influence of ramp lesions on knee kinematics, the effect on the ACL reconstruction graft remains unknown.Purpose/HypothesisThe purpose was to determine the effects of ramp lesion and ramp lesion repair on knee kinematics, the in situ forces in the ACL, and bony contact forces. It was hypothesized that ramp lesions will significantly increase in situ forces in the native ACL and bony contact forces and that ramp lesion repair will restore these conditions comparably with those forces of the intact knee.Study DesignControlled laboratory study.MethodsInvestigators tested 9 human cadaveric knee specimens using a 6 degrees of freedom robotic testing system. The knee was continuously flexed from full extension to 90° while the following loads were applied: (1) 90-N anterior load, (2) 5 N·m of external-rotation torque, (3) 134-N anterior load + 200-N compression load, (4) 4 N·m of external-rotation torque + 200-N compression load, and (5) 4 N·m of internal-rotation torque + 200-N compression load. Loading conditions were applied to the intact knee, a knee with an arthroscopically induced 25-mm ramp lesion, and a knee with an all-inside repaired ramp lesion. In situ forces in the ACL, bony contact forces in the medial compartment, and bony contact forces in the lateral compartment were quantified.ResultsIn response to all loading conditions, no differences were found with respect to kinematics, in situ forces in the ACL, and bony contact forces between intact knees and knees with a ramp lesion. However, compared with intact knees, knees with a ramp lesion repair had significantly reduced anterior translation at flexion angles from full extension to 40° in response to a 90-N anterior load (P < .05). In addition, a significant decrease in the in situ forces in the ACL after ramp repair was detected only for higher flexion angles when 4 N·m of external-rotation torque combined with a 200-N compression load (P < .05) and 4 N·m of internal-rotation torque combined with a 200-N compression load were applied (P < .05).ConclusionIn this biomechanical study, ramp lesions did not significantly affect knee biomechanics at the time of surgery.Clinical RelevanceFrom a biomechanical time-zero perspective, the indications for ramp lesion repair may be limited.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.