• Ann. Intern. Med. · Jul 2018

    Implications of Nine Risk Prediction Models for Selecting Ever-Smokers for Computed Tomography Lung Cancer Screening.

    • Hormuzd A Katki, Stephanie A Kovalchik, Lucia C Petito, Li C Cheung, Eric Jacobs, Ahmedin Jemal, Christine D Berg, and Anil K Chaturvedi.
    • National Cancer Institute, Bethesda, Maryland (H.A.K., S.A.K., L.C.P., L.C.C., C.D.B., A.K.C.).
    • Ann. Intern. Med. 2018 Jul 3; 169 (1): 10-19.

    BackgroundLung cancer screening guidelines recommend using individualized risk models to refer ever-smokers for screening. However, different models select different screening populations. The performance of each model in selecting ever-smokers for screening is unknown.ObjectiveTo compare the U.S. screening populations selected by 9 lung cancer risk models (the Bach model; the Spitz model; the Liverpool Lung Project [LLP] model; the LLP Incidence Risk Model [LLPi]; the Hoggart model; the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial Model 2012 [PLCOM2012]; the Pittsburgh Predictor; the Lung Cancer Risk Assessment Tool [LCRAT]; and the Lung Cancer Death Risk Assessment Tool [LCDRAT]) and to examine their predictive performance in 2 cohorts.DesignPopulation-based prospective studies.SettingUnited States.ParticipantsModels selected U.S. screening populations by using data from the National Health Interview Survey from 2010 to 2012. Model performance was evaluated using data from 337 388 ever-smokers in the National Institutes of Health-AARP Diet and Health Study and 72 338 ever-smokers in the CPS-II (Cancer Prevention Study II) Nutrition Survey cohort.MeasurementsModel calibration (ratio of model-predicted to observed cases [expected-observed ratio]) and discrimination (area under the curve [AUC]).ResultsAt a 5-year risk threshold of 2.0%, the models chose U.S. screening populations ranging from 7.6 million to 26 million ever-smokers. These disagreements occurred because, in both validation cohorts, 4 models (the Bach model, PLCOM2012, LCRAT, and LCDRAT) were well-calibrated (expected-observed ratio range, 0.92 to 1.12) and had higher AUCs (range, 0.75 to 0.79) than 5 models that generally overestimated risk (expected-observed ratio range, 0.83 to 3.69) and had lower AUCs (range, 0.62 to 0.75). The 4 best-performing models also had the highest sensitivity at a fixed specificity (and vice versa) and similar discrimination at a fixed risk threshold. These models showed better agreement on size of the screening population (7.6 million to 10.9 million) and achieved consensus on 73% of persons chosen.LimitationNo consensus on risk thresholds for screening.ConclusionThe 9 lung cancer risk models chose widely differing U.S. screening populations. However, 4 models (the Bach model, PLCOM2012, LCRAT, and LCDRAT) most accurately predicted risk and performed best in selecting ever-smokers for screening.Primary Funding SourceIntramural Research Program of the National Institutes of Health/National Cancer Institute.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…