-
- Damien Lanfray, Sébastien Arthaud, Johanne Ouellet, Vincent Compère, Jean-Luc Do Rego, Jérôme Leprince, Benjamin Lefranc, Hélène Castel, Cynthia Bouchard, Boris Monge-Roffarello, Denis Richard, Georges Pelletier, Hubert Vaudry, Marie-Christine Tonon, and Fabrice Morin.
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France.
- Diabetes. 2013 Mar 1; 62 (3): 801-10.
AbstractHypothalamic glucose sensing is involved in the control of feeding behavior and peripheral glucose homeostasis, and glial cells are suggested to play an important role in this process. Diazepam-binding inhibitor (DBI) and its processing product the octadecaneuropeptide (ODN), collectively named endozepines, are secreted by astroglia, and ODN is a potent anorexigenic factor. Therefore, we investigated the involvement of endozepines in brain glucose sensing. First, we showed that intracerebroventricular administration of glucose in rats increases DBI expression in hypothalamic glial-like tanycytes. We then demonstrated that glucose stimulates endozepine secretion from hypothalamic explants. Feeding experiments indicate that the anorexigenic effect of central administration of glucose was blunted by coinjection of an ODN antagonist. Conversely, the hyperphagic response elicited by central glucoprivation was suppressed by an ODN agonist. The anorexigenic effects of centrally injected glucose or ODN agonist were suppressed by blockade of the melanocortin-3/4 receptors, suggesting that glucose sensing involves endozepinergic control of the melanocortin pathway. Finally, we found that brain endozepines modulate blood glucose levels, suggesting their involvement in a feedback loop controlling whole-body glucose homeostasis. Collectively, these data indicate that endozepines are a critical relay in brain glucose sensing and potentially new targets in treatment of metabolic disorders.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.