• Acta oncologica · Nov 2017

    Multicenter Study

    Comparison of PET and CT radiomics for prediction of local tumor control in head and neck squamous cell carcinoma.

    • Marta Bogowicz, Oliver Riesterer, Luisa Sabrina Stark, Gabriela Studer, Jan Unkelbach, Matthias Guckenberger, and Stephanie Tanadini-Lang.
    • a Department of Radiation Oncology , University Hospital Zurich and University of Zurich , Zurich , Switzerland.
    • Acta Oncol. 2017 Nov 1; 56 (11): 1531-1536.

    PurposeAn association between radiomic features extracted from CT and local tumor control in the head and neck squamous cell carcinoma (HNSCC) has been shown. This study investigated the value of pretreatment functional imaging (18F-FDG PET) radiomics for modeling of local tumor control.Material And MethodsData from HNSCC patients (n = 121) treated with definitive radiochemotherapy were used for model training. In total, 569 radiomic features were extracted from both contrast-enhanced CT and 18F-FDG PET images in the primary tumor region. CT, PET and combined PET/CT radiomic models to assess local tumor control were trained separately. Five feature selection and three classification methods were implemented. The performance of the models was quantified using concordance index (CI) in 5-fold cross validation in the training cohort. The best models, per image modality, were compared and verified in the independent validation cohort (n = 51). The difference in CI was investigated using bootstrapping. Additionally, the observed and radiomics-based estimated probabilities of local tumor control were compared between two risk groups.ResultsThe feature selection using principal component analysis and the classification based on the multivariabale Cox regression with backward selection of the variables resulted in the best models for all image modalities (CICT = 0.72, CIPET = 0.74, CIPET/CT = 0.77). Tumors more homogenous in CT density (decreased GLSZMsize_zone_entropy) and with a focused region of high FDG uptake (higher GLSZMSZLGE) indicated better prognosis. No significant difference in the performance of the models in the validation cohort was observed (CICT = 0.73, CIPET = 0.71, CIPET/CT = 0.73). However, the CT radiomics-based model overestimated the probability of tumor control in the poor prognostic group (predicted  = 68%, observed  = 56%).ConclusionsBoth CT and PET radiomics showed equally good discriminative power for local tumor control modeling in HNSCC. However, CT-based predictions overestimated the local control rate in the poor prognostic validation cohort, and thus, we recommend to base the local control modeling on the 18F-FDG PET.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.