• Int J Med Inform · Jan 2021

    Machine learning-based models to support decision-making in emergency department triage for patients with suspected cardiovascular disease.

    • Huilin Jiang, Haifeng Mao, Huimin Lu, Peiyi Lin, Wei Garry, Huijing Lu, Guangqian Yang, Timothy H Rainer, and Xiaohui Chen.
    • Emergency Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China. Electronic address: lifisher@126.com.
    • Int J Med Inform. 2021 Jan 1; 145: 104326.

    BackgroundAccurate differentiation and prioritization in emergency department (ED) triage is important to identify high-risk patients and to efficiently allocate of finite resources. Using data available from patients with suspected cardiovascular disease presenting at ED triage, this study aimed to train and compare the performance of four common machine learning models to assist in decision making of triage levels.MethodsThis cross-sectional study in the second Affiliated Hospital of Guangzhou Medical University was conducted from August 2015 to December 2018 inclusive. Demographic information, vital signs, blood glucose, and other available triage scores were collected. Four machine learning models - multinomial logistic regression (multinomial LR), eXtreme gradient boosting (XGBoost), random forest (RF) and gradient-boosted decision tree (GBDT) - were compared. For each model, 80 % of the data set was used for training and 20 % was used to test the models. The area under the receiver operating characteristic curve (AUC), accuracy and macro- F1 were calculated for each model.ResultsIn 17,661 patients presenting with suspected cardiovascular disease, the distribution of triage of level 1, level 2, level 3 and level 4 were 1.3 %, 18.6 %, 76.5 %, and 3.6 % respectively. The AUCs were: XGBoost (0.937), GBDT (0.921), RF (0.919) and multinomial LR (0.908). Based on feature importance generated by XGBoost, blood pressure, pulse rate, oxygen saturation, and age were the most significant variables for making decisions at triage.ConclusionFour machine learning models had good discriminative ability of triage. XGBoost demonstrated a slight advantage over other models. These models could be used for differential triage of low-risk patients and high-risk patients as a strategy to improve efficiency and allocation of finite resources.Copyright © 2020 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…