• Cortex · Jun 1975

    Independent functioning of the two cerebral hemispheres for recognizing bilaterally presented tachistoscopic visual-half-field stimuli.

    • D Hines.
    • Cortex. 1975 Jun 1; 11 (2): 132-43.

    AbstractBilateral tachistoscopic presentation of verbal stimuli produces a significantly larger right visual half-field (VHF) superiority than does unilateral presentation, when fixation is controlled by a center digit. This experiment tested whether the increased asymmetry was due to (a) subjects attending the right VHF and ignoring the left VHF or (b) interference between the hemispheres due to competition for the left hemisphere language areas. Words, shaptes, and pictures of faces were presented bilaterally to each VHF, with fixation controlled by a center digit. In three conditions, the same type of stimuli was presented in each VHF (e.g., a word in both the left and right VHF). In two conditions words were presented to one VHF and nonverbal stimuli to the opposite VHF (words paired with words and words paired with faces). It was found that the stimulus pairings did not affect VHF asymmetry for any stimulus. Words showed a large right VHF superiority in all conditions. Shapes showed a significantly smaller right VHF superiority in all conditions. Faces showed no VHF asymmetry in any condition. It was concluded that attentional factors were not important since shapes or faces could be recognized accurately from the left VHF without lowering verbal recognition from the right VHF. Thus the low recognition accuracy from the left VHF is specific for verbal stimuli rather than attentional. The interference hypothesis was also not supported since all the right VHF stimuli (words, shapes, or faces) were associated with low recognition of words from the left VHF. It was suggested instead that VHF asymmetry under unilateral and bilateral presentation reflect two different mechanisms. Under conditions of unilateral presentation, VHF asymmetries are caused by loss of information when any given stimulus must cross the callosum to reach the hemisphere specialized for its processing. However, with bilateral VHF presentation and fixation control, the two hemispheres act as independent channels for information processing. Under this condition, each hemisphere recognized the stimulus from its contralateral VHF. Thus the large right VHF superiority for words with bilateral presentation reflects the superior ability of the left hemisphere for verbal recognition.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…