• IEEE Trans Med Imaging · Nov 2007

    A fuzzy, nonparametric segmentation framework for DTI and MRI analysis: with applications to DTI-tract extraction.

    • Suyash P Awate, Hui Zhang, and James C Gee.
    • Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA. awate@mail.med.upenn.edu
    • IEEE Trans Med Imaging. 2007 Nov 1; 26 (11): 1525-36.

    AbstractThis paper presents a novel fuzzy-segmentation method for diffusion tensor (DT) and magnetic resonance (MR) images. Typical fuzzy-segmentation schemes, e.g., those based on fuzzy C means (FCM), incorporate Gaussian class models that are inherently biased towards ellipsoidal clusters characterized by a mean element and a covariance matrix. Tensors in fiber bundles, however, inherently lie on specific manifolds in Riemannian spaces. Unlike FCM-based schemes, the proposed method represents these manifolds using nonparametric data-driven statistical models. The paper describes a statistically-sound (consistent) technique for nonparametric modeling in Riemannian DT spaces. The proposed method produces an optimal fuzzy segmentation by maximizing a novel information-theoretic energy in a Markov-random-field framework. Results on synthetic and real, DT and MR images, show that the proposed method provides information about the uncertainties in the segmentation decisions, which stem from imaging artifacts including noise, partial voluming, and inhomogeneity. By enhancing the nonparametric model to capture the spatial continuity and structure of the fiber bundle, we exploit the framework to extract the cingulum fiber bundle. Typical tractography methods for tract delineation, incorporating thresholds on fractional anisotropy and fiber curvature to terminate tracking, can face serious problems arising from partial voluming and noise. For these reasons, tractography often fails to extract thin tracts with sharp changes in orientation, such as the cingulum. The results demonstrate that the proposed method extracts this structure significantly more accurately as compared to tractography.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.