• Knee Surg Sports Traumatol Arthrosc · Apr 2020

    ACL reconstruction combined with lateral monoloop tenodesis can restore intact knee laxity.

    • Koen C Lagae, Joris Robberecht, Kiron K Athwal, VerdonkPeter C MPCMAntwerp Orthopaedic Centre Monica Hospitals, Antwerp, Belgium.Department of Orthopaedic Surgery, Antwerp University Hospital (UZA), Antwerp, Belgium., and Andrew A Amis.
    • Antwerp Orthopaedic Centre Monica Hospitals, Antwerp, Belgium.
    • Knee Surg Sports Traumatol Arthrosc. 2020 Apr 1; 28 (4): 1159-1168.

    PurposeAn anterior cruciate ligament (ACL) injury is often combined with injury to the lateral extra-articular structures, which may cause a combined anterior and rotational laxity. It was hypothesised that addition of a 'monoloop' lateral extra-articular tenodesis (mLET) to an ACL reconstruction would restore anteroposterior, internal rotation and pivot-shift laxities better than isolated ACL reconstruction in combined injuries.MethodTwelve cadaveric knees were tested, using an optical tracking system to record the kinematics through 0°-100° of knee flexion with no load, anterior and posterior translational forces (90 N), internal and external rotational torques (5 Nm), and a combination of an anterior translational (90 N) plus internal rotational load (5 Nm). They were tested intact, after sectioning the ACL, sectioning anterolateral ligament (ALL), iliotibial band (ITB) graft harvest, releasing deep ITB fibres, hamstrings tendon ACL reconstruction, mLET combined with ACL reconstruction, and isolated mLET. Two-way repeated-measures ANOVA compared laxity data across knee states and flexion angles. When differences were found, paired t tests with Bonferroni correction were performed.ResultsIn the ACL-deficient knee, cutting the ALL significantly increased anterior laxity only at 20°-30°, and only significantly increased internal rotation at 50°. Additional deep ITB release significantly increased anterior laxity at 40°-90° and caused a large increase of internal rotation at 20°-100°. Isolated ACL reconstruction restored anterior drawer, but significant differences remained in internal rotation at 30°-100°. After adding an mLET there were no remaining differences with anterior translation or internal rotation compared to the intact knee. With the combined injury, isolated mLET allowed abnormal anterior translation and rotation to persist.ConclusionsCutting the deep fibres of the ITB caused large increases in tibial internal rotation laxity across the range of knee flexion, while cutting the ALL alone did not. With ACL deficiency combined with anterolateral deficiency, ACL reconstruction alone was insufficient to restore native knee rotational laxity. However, combining a 'monoloop' lateral extra-articular tenodesis with ACL reconstruction did restore native knee laxity.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…