• Bmc Public Health · Jun 2021

    Estimating effective infection fatality rates during the course of the COVID-19 pandemic in Germany.

    • Christian Staerk, Tobias Wistuba, and Andreas Mayr.
    • Working Group Statistical Methods in Epidemiology, Department of Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Bonn, Germany. christian.staerk@imbie.uni-bonn.de.
    • Bmc Public Health. 2021 Jun 5; 21 (1): 1073.

    BackgroundThe infection fatality rate (IFR) of the Coronavirus Disease 2019 (COVID-19) is one of the most discussed figures in the context of this pandemic. In contrast to the case fatality rate (CFR), the IFR depends on the total number of infected individuals - not just on the number of confirmed cases. In order to estimate the IFR, several seroprevalence studies have been or are currently conducted.MethodsUsing German COVID-19 surveillance data and age-group specific IFR estimates from multiple international studies, this work investigates time-dependent variations in effective IFR over the course of the pandemic. Three different methods for estimating (effective) IFRs are presented: (a) population-averaged IFRs based on the assumption that the infection risk is independent of age and time, (b) effective IFRs based on the assumption that the age distribution of confirmed cases approximately reflects the age distribution of infected individuals, and (c) effective IFRs accounting for age- and time-dependent dark figures of infections.ResultsEffective IFRs in Germany are estimated to vary over time, as the age distributions of confirmed cases and estimated infections are changing during the course of the pandemic. In particular during the first and second waves of infections in spring and autumn/winter 2020, there has been a pronounced shift in the age distribution of confirmed cases towards older age groups, resulting in larger effective IFR estimates. The temporary increase in effective IFR during the first wave is estimated to be smaller but still remains when adjusting for age- and time-dependent dark figures. A comparison of effective IFRs with observed CFRs indicates that a substantial fraction of the time-dependent variability in observed mortality can be explained by changes in the age distribution of infections. Furthermore, a vanishing gap between effective IFRs and observed CFRs is apparent after the first infection wave, while an increasing gap can be observed during the second wave.ConclusionsThe development of estimated effective IFR and observed CFR reflects the changing age distribution of infections over the course of the COVID-19 pandemic in Germany. Further research is warranted to obtain timely age-stratified IFR estimates, particularly in light of new variants of the virus.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.