• JAMA network open · Jan 2021

    Multicenter Study

    Noninvasive Prediction of Occult Peritoneal Metastasis in Gastric Cancer Using Deep Learning.

    • Yuming Jiang, Xiaokun Liang, Wei Wang, Chuanli Chen, Qingyu Yuan, Xiaodong Zhang, Na Li, Hao Chen, Jiang Yu, Yaoqin Xie, Yikai Xu, Zhiwei Zhou, Guoxin Li, and Ruijiang Li.
    • Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
    • JAMA Netw Open. 2021 Jan 4; 4 (1): e2032269.

    ImportanceOccult peritoneal metastasis frequently occurs in patients with advanced gastric cancer and is poorly diagnosed with currently available tools. Because the presence of peritoneal metastasis precludes the possibility of curative surgery, there is an unmet need for a noninvasive approach to reliably identify patients with occult peritoneal metastasis.ObjectiveTo assess the use of a deep learning model for predicting occult peritoneal metastasis based on preoperative computed tomography images.Design, Setting, And ParticipantsIn this multicenter, retrospective cohort study, a deep convolutional neural network, the Peritoneal Metastasis Network (PMetNet), was trained to predict occult peritoneal metastasis based on preoperative computed tomography images. Data from a cohort of 1225 patients with gastric cancer who underwent surgery at Sun Yat-sen University Cancer Center (Guangzhou, China) were used for training purposes. To externally validate the model, data were collected from 2 independent cohorts comprising a total of 753 patients with gastric cancer who underwent surgery at Nanfang Hospital (Guangzhou, China) or the Third Affiliated Hospital of Southern Medical University (Guangzhou, China). The status of peritoneal metastasis for all patients was confirmed by pathological examination of pleural specimens obtained during surgery. Detailed clinicopathological data were collected for each patient. Data analysis was performed between September 1, 2019, and January 31, 2020.Main Outcomes And MeasuresThe area under the receiver operating characteristic curve (AUC) and decision curve were analyzed to evaluate performance in predicting occult peritoneal metastasis.ResultsA total of 1978 patients (mean [SD] age, 56.0 [12.2] years; 1350 [68.3%] male) were included in the study. The PMetNet model achieved an AUC of 0.946 (95% CI, 0.927-0.965), with a sensitivity of 75.4% and a specificity of 92.9% in external validation cohort 1. In external validation cohort 2, the AUC was 0.920 (95% CI, 0.848-0.992), with a sensitivity of 87.5% and a specificity of 98.2%. The discrimination performance of PMetNet was substantially higher than conventional clinicopathological factors (AUC range, 0.51-0.63). In multivariable logistic regression analysis, PMetNet was an independent predictor of occult peritoneal metastasis.Conclusions And RelevanceThe findings of this cohort study suggest that the PMetNet model can serve as a reliable noninvasive tool for early identification of patients with clinically occult peritoneal metastasis, which will inform individualized preoperative treatment decision-making and may avoid unnecessary surgery and complications. These results warrant further validation in prospective studies.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…