-
Investigative radiology · Oct 2017
Comprehensive Dynamic Contrast-Enhanced 3D Magnetic Resonance Imaging of the Breast With Fat/Water Separation and High Spatiotemporal Resolution Using Radial Sampling, Compressed Sensing, and Parallel Imaging.
- Thomas Benkert, Kai Tobias Block, Samantha Heller, Melanie Moccaldi, Daniel K Sodickson, Sungheon Gene Kim, and Linda Moy.
- From the *Center for Advanced Imaging Innovation and Research (CAI2R); and †Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY.
- Invest Radiol. 2017 Oct 1; 52 (10): 583-589.
ObjectivesThe aim of this study was to assess the applicability of Dixon radial volumetric encoding (Dixon-RAVE) for comprehensive dynamic contrast-enhanced 3D magnetic resonance imaging (MRI) of the breast using a combination of radial sampling, model-based fat/water separation, compressed sensing, and parallel imaging.Materials And MethodsIn this Health Insurance Portability and Accountability Act-compliant prospective study, 24 consecutive patients underwent bilateral breast MRI, including both conventional fat-suppressed and non-fat-suppressed precontrast T1-weighted volumetric interpolated breath-hold examination (VIBE). Afterward, 1 continuous Dixon-RAVE scan was performed with the proposed approach while the contrast agent was injected. This scan was immediately followed by the acquisition of 4 conventional fat-saturated VIBE scans. From the comprehensive Dixon-RAVE data set, different image contrasts were reconstructed that are comparable to the separate conventional VIBE scans.Two radiologists independently rated image quality, conspicuity of fibroglandular tissue from fat (FG), and degree of fat suppression (FS) on a 5-point Likert-type scale for the following 3 comparisons: precontrast fat-suppressed (pre-FS), precontrast non-fat-suppressed (pre-NFS), and dynamic fat-suppressed (dyn-FS) images.ResultsWhen scores were averaged over readers, Dixon-RAVE achieved significantly higher (P < 0.001) degree of fat suppression compared with VIBE, for both pre-FS (4.25 vs 3.67) and dyn-FS (4.10 vs 3.46) images. Although Dixon-RAVE had lower image quality score compared with VIBE for the pre-FS (3.56 vs 3.67, P = 0.490), the pre-NFS (3.54 vs 3.88, P = 0.009), and the dyn-FS images (3.06 vs 3.67, P < 0.001), acceptable or better diagnostic quality was achieved (score ≥ 3). The FG score for Dixon-RAVE in comparison to VIBE was significantly higher for the pre-FS image (4.23 vs 3.85, P = 0.044), lower for the pre-NFS image (3.98 vs 4.25, P = 0.054), and higher for the dynamic fat-suppressed image (3.90 vs 3.85, P = 0.845).ConclusionsDixon-RAVE can serve as a one-stop-shop approach for comprehensive T1-weighted breast MRI with diagnostic image quality, high spatiotemporal resolution, reduced overall scan time, and improved fat suppression compared with conventional imaging.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.