-
Cancer Chemother. Pharmacol. · Oct 2003
Determination of drug synergism between the tyrosine kinase inhibitors NSC 680410 (adaphostin) and/or STI571 (imatinib mesylate, Gleevec) with cytotoxic drugs against human leukemia cell lines.
- Ioannis A Avramis, Walter E Laug, Edward A Sausville, and Vassilios I Avramis.
- Division of Hematology/Oncology, Department of Pediatrics, USC Keck School of Medicine, 4650 Sunset Blvd, Los Angeles, CA 90027, USA.
- Cancer Chemother. Pharmacol. 2003 Oct 1; 52 (4): 307-18.
AbstractThe primary growth factor receptors involved in angiogenesis and lymphomagenesis can be grouped into the vascular endothelial growth factor (VEGF) receptors and related families. Inhibition of VEGF and other growth factors, including c-Abl, c-Kit, platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and insulin-like growth factor (IGF), or their receptors containing tyrosine kinase domains by antiangiogenesis drugs disrupts cell survival signal transduction pathways and may contribute to the proapoptotic pathways in malignant cells. However, clinical trials suggest that signal transduction inhibitors have considerable antitumor activity when used as single agents only for a short time, most likely due to the development of drug resistance by the host or by the tumor cells. In order to prevent this problem and to augment their antitumor efficacy, these agents could be administered in combination with cytotoxic antineoplastic drugs. We hypothesized that the combination of the antiangiogenesis tyrosine kinase inhibitors with cytotoxic drugs would produce synergistic drug regimens. Two human T-lymphoblastic leukemia cell lines that express VEGF-R1, CEM/0 (wild-type, WT) and the drug-resistant clone CEM/ara-C/I/ASNase-0.5-2, were utilized in the drug combination studies. NSC 680410, a tyrosine kinase inhibitor given at 0.1 to 1 microM for 72 h, inhibited VEGF secretion and leukemic cell growth at 90% of vehicle-treated control cultures with an IC50 value of less than 1 microM. The cytotoxic drugs idarubicin (IDA), fludarabine (Fludara), and cytosine arabinoside (ara-C) were used for the various drug combinations. One-, two-, three-, and four-drug treatments were tested. Cell viability was documented by the MTT assay and photomicrographic estimation of apoptotic cells. Both the combination index (CI) and isobologram evaluations demonstrated strong synergism between these drugs and the tyrosine kinase inhibitor. NSC 680410 was highly synergistic with IDA, IDA + ara-C, and IDA + Fludara + ara-C, over the respective cytotoxic drug regimens at concentrations easily achieved in patient plasma. NSC 680410 potentiated the activity of IDA in both leukemia cell lines by 17.8- and 221.4-fold in the WT and drug-resistant line, respectively. The activity of NSC 680410 + IDA + ara-C was also potentiated by 58.8-fold in the WT line, and the activity of NSC 680410 + IDA + Fludara + ara-C by 2.4- and 6.47x10(6)-fold in the WT and drug-resistant lines, respectively. The results suggest that IDA was not needed for optimal synergistic activity in the CEM/0 cells, but IDA was a necessary component to obtain drug synergism in the drug-resistant clone. Similarly, STI571 (imatinib mesylate, Gleevec), the p210(bcr/abl) tyrosine kinase inhibitor, demonstrated synergism with Fludara + ara-C or IDA + ara-C. Most importantly STI571 showed synergism with NSC 680410, suggesting that these drugs inhibit different tyrosine kinase domains in human leukemia cells. Lastly, pretreatment of leukemic cells with NSC 680410 showed additivity with gamma radiation in comparison to either treatment modality alone. The data, taken together, suggest that by inhibiting the pro-survival signal transduction pathway (VEGF-R1) and DNA replication by cytotoxic drugs, leukemic cells undergo apoptosis in a synergistic manner. In conclusion, the combinations of antiangiogenesis and DNA-damaging cytotoxic drugs are highly synergistic regimens in both WT and drug-resistant leukemic cell lines and they should be examined further.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.