• Magn Reson Med · Nov 2011

    Spatially 2D-selective RF excitations using the PROPELLER trajectory: basic principles and application to MR spectroscopy of irregularly shaped single voxel.

    • Martin G Busch and Jürgen Finsterbusch.
    • Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
    • Magn Reson Med. 2011 Nov 1; 66 (5): 1218-25.

    AbstractSpatially two-dimensional selective radio frequency (2DRF) excitations are able to excite arbitrarily-shaped profiles in their excitation plane and, hence, can be used to minimize partial volume effects in single-voxel magnetic resonance spectroscopy. In this study, 2DRF excitations based on the PROPELLER trajectory which consists of blades of parallel lines that are rotated against each other, are presented. Because the k-space center is covered with each segment, the trajectory yields a high signal efficiency which, e.g., is considerably improved compared to a segmented blipped-planar approach. It is shown that a sampling density correction based on the PROPELLER trajectory's Voronoi diagram suppresses unwanted side excitations. Off-resonance effects like chemical-shift displacement artifacts, can be minimized by applying nonselective refocusing radio frequency pulses between the lines of a blade. With half-Fourier segments, the 2DRF's echo time contribution can be shortened considerably. Thus, robust 2DRF excitations capable of exciting high-resolution profiles at short echo times with high signal efficiency are obtained. Their applicability to MR spectroscopy of an arbitrarily-shaped single voxel is demonstrated in a two-bottle phantom and in the human brain in vivo on a 3 T whole-body MR system.Copyright © 2011 Wiley Periodicals, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…