-
- Chunguang Chen, Helena Chmelova, Christian M Cohrs, Julie A Chouinard, Stephan R Jahn, Julia Stertmann, Ingo Uphues, and Stephan Speier.
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Clinic Carl Gustav Carus, Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany German Research Foundation-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, Dresden, Germany German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
- Diabetes. 2016 Sep 1; 65 (9): 2676-85.
AbstractEmerging insulin resistance is normally compensated by increased insulin production of pancreatic β-cells, thereby maintaining normoglycemia. However, it is unclear whether this is achieved by adaptation of β-cell function, mass, or both. Most importantly, it is still unknown which of these adaptive mechanisms fail when type 2 diabetes develops. We performed longitudinal in vivo imaging of β-cell calcium dynamics and islet mass of transplanted islets of Langerhans throughout diet-induced progression from normal glucose homeostasis, through compensation of insulin resistance, to prediabetes. The results show that compensation of insulin resistance is predominated by alterations of β-cell function, while islet mass only gradually expands. Hereby, functional adaptation is mediated by increased calcium efficacy, which involves Epac signaling. Prior to prediabetes, β-cell function displays decreased stimulated calcium dynamics, whereas islet mass continues to increase through prediabetes onset. Thus, our data reveal a predominant role of islet function with distinct contributions of triggering and amplifying pathway in the in vivo processes preceding diabetes onset. These findings support protection and recovery of β-cell function as primary goals for prevention and treatment of diabetes and provide insight into potential therapeutic targets.© 2016 by the American Diabetes Association.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.