• Med Phys · Jul 2008

    Incorporating geometric ray tracing to generate initial conditions for intensity modulated arc therapy optimization.

    • Mike Oliver, Adam Gladwish, Jeff Craig, Jeff Chen, and Eugene Wong.
    • Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 5C1, Canada. michael.oliver@lhsc.on.ca
    • Med Phys. 2008 Jul 1; 35 (7): 3137-50.

    Purpose And BackgroundIntensity modulated arc therapy (IMAT) is a rotational variant of Intensity modulated radiation therapy (IMRT) that is achieved by allowing the multileaf collimator (MLC) positions to vary as the gantry rotates around the patient. This work describes a method to generate an IMAT plan through the use of a fast ray tracing technique based on dosimetric and geometric information for setting initial MLC leaf positions prior to final IMAT optimization.Methods And MaterialsThree steps were used to generate an IMAT plan. The first step was to generate arcs based on anatomical contours. The second step was to generate ray importance factor (RIF) maps by ray tracing the dose distribution inside the planning target volume (PTV) to modify the MLC leaf positions of the anatomical arcs to reduce the maximum dose inside the PTV. The RIF maps were also segmented to create a new set of arcs to improve the dose to low dose voxels within the PTV. In the third step, the MLC leaf positions from all arcs were put through a leaf position optimization (LPO) algorithm and brought into a fast Monte Carlo dose calculation engine for a final dose calculation. The method was applied to two phantom cases, a clinical prostate case and the Radiological Physics Center (RPC)'s head and neck phantom. The authors assessed the plan improvements achieved by each step and compared plans with and without using RIF. They also compared the IMAT plan with an IMRT plan for the RPC phantom.ResultsAll plans that incorporated RIF and LPO had lower objective function values than those that incorporated LPO only. The objective function value was reduced by about 15% after the generation of RIF arcs and 52% after generation of RIF arcs and leaf position optimization. The IMAT plan for the RPC phantom had similar dose coverage for PTV1 and PTV2 (the same dose volume histogram curves), however, slightly lower dose to the normal tissues compared to a six-field IMRT plan.ConclusionThe use of a ray importance factor can generate initial IMAT arcs efficiently for further MLC leaf position optimization to obtain more favorable IMAT plan.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.