• Am. J. Vet. Res. · Oct 2006

    Effects of thermal energy on chondrocyte viability.

    • Jessica R Voss, Yan Lu, Ryland B Edwards, John J Bogdanske, and Mark D Markel.
    • Comparative Orthopaedic Research Laboratory, Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.
    • Am. J. Vet. Res. 2006 Oct 1; 67 (10): 1708-12.

    ObjectiveTo determine the critical temperature that reduces chondrocyte viability and evaluate the ability of chondrocytes to recover after exposure to the critical temperature.Sample PopulationCartilage explants obtained from the humeral heads of 30 sheep.ProceduresIn a randomized block design, 318 full-thickness cartilage explants were collected from 30 humeral heads of sheep and cultured for up to 14 days. On the first day of culture (day 0), explants were subjected to temperatures of 37 degrees , 45 degrees , 50 degrees , 55 degrees , 60 degrees , or 65 degrees C for 5 minutes by heating culture tubes in a warming block. The ability for chondrocytes to recover after exposure to the critical temperature was determined by evaluating viability at days 0, 1, 3, 7, and 14 days after heating. Images were analyzed by use of confocal laser microscopy.ResultsAnalysis of images revealed a significant decrease in live cells and a significant increase in dead cells as temperature increased. Additionally, the deepest layer of cartilage had a significantly lower percentage of live cells, compared with values for the 3 most superficial layers. Chondrocytes did have some ability to recover temporarily after the initial thermal insult.Conclusions And Clinical RelevanceA strong relationship exists between increasing temperature and cell death, with a sharp increase in chondrocyte death between 50 degrees and 55 degrees C. Chondrocytes in the deepest cartilage layer are most susceptible to thermal injury. The threshold of chondrocyte recovery from thermal injury is much lower than temperatures reached during chondroplasty by use of most radiofrequency energy devices.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…