-
- A Kanamori, S L Woo, C B Ma, J Zeminski, T W Rudy, G Li, and G A Livesay.
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
- Arthroscopy. 2000 Sep 1; 16 (6): 633-9.
PurposeAlthough it is well known that the anterior cruciate ligament (ACL) is a primary restraint of the knee under anterior tibial load, the role of the ACL in resisting internal tibial torque and the pivot shift test is controversial. The objective of this study was to determine the effect of these 2 external loading conditions on the kinematics of the intact and ACL-deficient knee and the in situ force in the ACL.Type Of StudyThis study was a biomechanical study that used cadaveric knees with the intact knee of the specimen serving as a control.Materials And MethodsTwelve human cadaveric knees were tested using a robotic/universal force-moment sensor testing system. This system applied (1) a 10-Newton meter (Nm) internal tibial torque and (2) a combined 10-Nm valgus and 10-Nm internal tibial torque (simulated pivot shift test) to the intact and the ACL-deficient knee.ResultsIn the ACL-deficient knee, the isolated internal tibial torque significantly increased coupled anterior tibial translation over that of the intact knee by 94%, 48%, and 19% at full extension, 15 degrees, and 30 degrees of flexion, respectively (P <.05). In the case of the simulated pivot shift test, there were similar increases in anterior tibial translation, i.e., 103%, 61%, and 32%, respectively (P <.05). Furthermore, the anterior tibial translation under the simulated pivot shift test was significantly greater than under an isolated internal tibial torque (P <.05). Under the simulated pivot shift test, the in situ forces in the ACL were 83 +/- 16 N at full extension and 93 +/- 23 N at 15 degrees of knee flexion. These forces were also significantly higher when compared with those for an isolated internal tibial torque (P <.05).ConclusionOur data indicate that the ACL plays an important role in restraining coupled anterior tibial translation in response to the simulated pivot shift test as well as under an isolated internal tibial torque, especially when the knee is near extension. These findings are also consistent with the clinical observation of anterior tibial subluxation during the pivot shift test with the knee near extension.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.