• Plos One · Jan 2019

    A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning.

    • Wenkai Huang, Yihao Xue, and Yu Wu.
    • Center for Research on Leading Technology of Special Equipment, School of Mechanical & Electrical Engineering, Guangzhou University, Guangzhou, P.R. China.
    • Plos One. 2019 Jan 1; 14 (7): e0219369.

    BackgroundDetection of pulmonary nodules is an important aspect of an automatic detection system. Incomputer-aided diagnosis (CAD) systems, the ability to detect pulmonary nodules is highly important, which plays an important role in the diagnosis and early treatment of lung cancer. Currently, the detection of pulmonary nodules depends mainly on doctor experience, which varies. This paper aims to address the challenge of pulmonary nodule detection more effectively.MethodsA method for detecting pulmonary nodules based on an improved neural network is presented in this paper. Nodules are clusters of tissue with a diameter of 3 mm to 30 mm in the pulmonary parenchyma. Because pulmonary nodules are similar to other lung structures and have a low density, false positive nodules often occur. Thus, our team proposed an improved convolutional neural network (CNN) framework to detect nodules. First, a nonsharpening mask is used to enhance the nodules in computed tomography (CT) images; then, CT images of 512×512 pixels are segmented into smaller images of 96×96 pixels. Second, in the 96×96 pixel images which contain or exclude pulmonary nodules, the plaques corresponding to positive and negative samples are segmented. Third, CT images segmented into 96×96 pixels are down-sampled to 64×64 and 32×32 size respectively. Fourth, an improved fusion neural network structure is constructed that consists of three three-dimensional convolutional neural networks, designated as CNN-1, CNN-2, and CNN-3, to detect false positive pulmonary nodules. The networks' input sizes are 32×32×32, 64×64×64, and 96×96×96 and include 5, 7, and 9 layers, respectively. Finally, we use the AdaBoost classifier to fuse the results of CNN-1, CNN-2, and CNN-3. We call this new neural network framework the Amalgamated-Convolutional Neural Network (A-CNN) and use it to detect pulmonary nodules.FindingsOur team trained A-CNN using the LUNA16 and Ali Tianchi datasets and evaluated its performance using the LUNA16 dataset. We discarded nodules less than 5mm in diameter. When the average number of false positives per scan was 0.125 and 0.25, the sensitivity of A-CNN reached as high as 81.7% and 85.1%, respectively.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.