• Environmental research · Jun 2019

    Residential mobility in early childhood and the impact on misclassification in pesticide exposures.

    • Chenxiao Ling, Julia E Heck, Myles Cockburn, Zeyan Liew, Erin Marcotte, and Beate Ritz.
    • Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA, USA.
    • Environ. Res. 2019 Jun 1; 173: 212-220.

    AbstractStudies of environmental exposures and childhood cancers that rely on records often only use maternal address at birth or address at cancer diagnosis to assess exposures in early childhood, possibly leading to exposure misclassification and questionable validity due to residential mobility during early childhood. Our objective was to assess patterns and identify factors that may predict residential mobility in early childhood, and examine the impact of mobility on early childhood exposure assessment for agriculturally applied pesticides and childhood cancers in California. We obtained the addresses at diagnosis of all childhood cancer cases born in 1998-2011 and diagnosed at 0-5 years of age (n = 6478) from the California Cancer Registry (CCR), and their birth addresses from linked birth certificates. Controls were randomly selected from California birth records and frequency matched (20:1) to all cases by year of birth. We obtained residential histories from a public-record database LexisNexis for both case (n = 3877 with age at diagnosis 1-5 years) and control (n = 99,262) families. Logistic regression analyses were conducted to assess the socio-demographic factors in relation to residential mobility in early childhood. We employed a Geographic Information System (GIS)-based system to estimate children's first year of life exposures to agriculturally applied pesticides based on birth vs diagnosis address or residential histories based upon Lexis-Nexis Public Records and assessed agreement between exposure measures using Spearman correlations and kappa statistics. Over 20% of case and control children moved in their first year of life, and 55% of children with cancer moved between birth and diagnosis. Older age at diagnosis, younger maternal age, lower maternal education, not having a Hispanic ethnic background, use of public health insurance, and non-metropolitan residence at birth were predictors of higher residential mobility. There was moderate to strong correlation (Spearman correlation = 0.76-0.83) and good agreement (kappa = 0.75-0.81) between the first year of life exposure estimates for agricultural pesticides applied within 2 km of a residence relying on an address at birth or at diagnosis or LexisNexis addresses; this did not differ by outcome status, but agreement decreased with decreasing buffer size, and increasing distance moved or age at diagnosis. These findings suggest that residential addresses collected at one point in time may represent residential history in early childhood to a reasonable extent; nevertheless, they exposure misclassification in the first year of life remains an issue. Also, the highest proportion of women not captured by LexisNexis were Hispanic women born in Mexico and those living in the lowest SES neighborhoods, i.e. possibly those with the higher environmental exposures, as well as younger women and those with less than high school education. Though LexisNexis only captures a sub-population, its data may be useful for augmenting address information and assessing the extent of exposure misclassification when estimating environmental exposures in large record linkage studies. Future research should investigate how to correct for exposure misclassification introduced by residential mobility that is not being captured by records.Copyright © 2019 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.