• Cancer Chemother. Pharmacol. · Nov 2018

    Biotransformation of [14C]-ixazomib in patients with advanced solid tumors: characterization of metabolite profiles in plasma, urine, and feces.

    • Sandeepraj Pusalkar, Mihaela Plesescu, Neeraj Gupta, Michael Hanley, Karthik Venkatakrishnan, Jing-Tao Wu, Cindy Xia, Xiaoquan Zhang, and Swapan Chowdhury.
    • Drug Metabolism and Pharmacokinetics, Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), 40 Landsdowne Street, Cambridge, MA, 02139, USA. Sandeepraj.Pusalkar@takeda.com.
    • Cancer Chemother. Pharmacol. 2018 Nov 1; 82 (5): 803-814.

    PurposeThis metabolite profiling and identification analysis (part of a phase I absorption, distribution, metabolism, and excretion study) aimed to define biotransformation pathways and evaluate associated inter-individual variability in four patients with advanced solid tumors who received [14C]-ixazomib.MethodsAfter administration of a single 4.1-mg oral dose of [14C]-ixazomib (total radioactivity [TRA] ~ 500 nCi), plasma (at selected timepoints), urine, and fecal samples were collected before dosing and continuously over 0-168-h postdose, followed by intermittent collections on days 14, 21, 28, and 35. TRA analysis and metabolite profiling were performed using accelerator mass spectrometry. Radiolabeled metabolites were identified using liquid chromatography/tandem mass spectrometry.ResultsMetabolite profiles were similar in plasma, urine, and feces samples across the four patients analyzed. All metabolites identified were de-boronated. In AUC0-816 h time-proportional pooled plasma, ixazomib (54.2% of plasma TRA) and metabolites M1 (18.9%), M3 (10.6%), and M2 (7.91%), were the primary components identified. M1 was the major metabolite, contributing to 31.1% of the 76.2% of the total dose excreted in urine and feces over 0-35-day postdose. As none of the identified metabolites had a boronic acid moiety, they are unlikely to be pharmacologically active.ConclusionsHydrolytic metabolism in conjunction with oxidative deboronation appears to be the principal process in the in vivo biotransformation pathways of ixazomib. The inference of formation-rate-limited clearance of ixazomib metabolites and the inferred lack of pharmacologic activity of identified circulating metabolites provides justification for use of parent drug concentrations/systemic exposure in clinical pharmacology analyses.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…