• Am J Sports Med · Feb 2019

    Tibial Slope and Its Effect on Force in Anterior Cruciate Ligament Grafts: Anterior Cruciate Ligament Force Increases Linearly as Posterior Tibial Slope Increases.

    • Andrew S Bernhardson, Zachary S Aman, Grant J Dornan, Bryson R Kemler, Hunter W Storaci, Alex W Brady, Gilberto Y Nakama, and Robert F LaPrade.
    • The Steadman Clinic, Vail, Colorado, USA.
    • Am J Sports Med. 2019 Feb 1; 47 (2): 296-302.

    BackgroundPrevious work has reported that increased tibial slope is directly correlated with increased anterior tibial translation, possibly predisposing patients to higher rates of anterior cruciate ligament (ACL) tears and causing higher rates of ACL graft failures over the long term. However, the effect of changes in sagittal plane tibial slope on ACL reconstruction (ACLR) graft force has not been well defined.Purpose/HypothesisThe purpose of this study was to quantify the effect of changes in sagittal plane tibial slope on ACLR graft force at varying knee flexion angles. Our null hypothesis was that changing the sagittal plane tibial slope would not affect force on the ACL graft.Study DesignControlled laboratory study.MethodsTen male fresh-frozen cadaveric knees had a posterior tibial osteotomy performed and an external fixator placed for testing and accurate slope adjustment. Following ACLR, specimens were compressed with a 200-N axial load at flexion angles of 0°, 15°, 30°, 45°, and 60°, and the graft loads were recorded through a force transducer clamped to the graft. Tibial slope was varied between -2° and 20° of posterior slope at 2° increments under these test conditions.ResultsACL graft force in the loaded testing state increased linearly as slope increased. This effect was independent of flexion angle. The final model utilized a 2-factor linear mixed-effects regression model and noted a significant, highly positive, and linear relationship between tibial slope and ACL graft force in axially loaded knees at all flexion angles tested (slope coefficient = 0.92, SE = 0.08, P < .001). Significantly higher graft force was also observed at 0° of flexion as compared with all other flexion angles for the loaded condition (all P < .001).ConclusionThe authors found that tibial slope had a strong linear relationship to the amount of graft force experienced by an ACL graft in axially loaded knees. Thus, a flatter tibial slope had significantly less loading of ACL grafts, while steeper slopes increased ACL graft loading. Our biomechanical findings support recent clinical evidence of increased ACL graft failure with steeper tibial slope secondary to increased graft loading.Clinical RelevanceEvaluation of the effect of increasing tibial slope on ACL graft force can guide surgeons when deciding if a slope-decreasing proximal tibial osteotomy should be performed before a revision ACLR. Overall, as slope increases, ACL graft force increases, and in our study, flatter slopes had lower ACL graft forces and were protective of the ACLR graft.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.