• FASEB J. · Aug 2009

    BRET3: a red-shifted bioluminescence resonance energy transfer (BRET)-based integrated platform for imaging protein-protein interactions from single live cells and living animals.

    • Abhijit De, Pritha Ray, Andreas Markus Loening, and Sanjiv Sam Gambhir.
    • Stanford University School of Medicine, Department of Radiology, Bioengineering and Bio-X Program, The James H. Clark Center, 318 Campus Dr., Stanford, CA 94305-5427, USA.
    • FASEB J. 2009 Aug 1; 23 (8): 2702-9.

    AbstractTaking advantage of the bioluminescence resonance energy transfer (BRET) phenomenon, we report the development of a highly photon-efficient, self-illuminating fusion protein combining a mutant red fluorescent protein (mOrange) and a mutant Renilla reniformis luciferase (RLuc8). This new BRET fusion protein (BRET3) exhibits severalfold improvement in light intensity in comparison with existing BRET fusion proteins. BRET3 also exhibits the most red-shifted light output (564-nm peak wavelength) of any reported bioluminescent protein that utilizes its natural substrate coelenterazine, a benefit of which is demonstrated at various tissue depths in small animals. The imaging utility of BRET3 at the single-cell level is demonstrated using an intramolecular sensor incorporating two mammalian target of rapamycin pathway proteins (FKBP12 and FRB) that dimerize only in the presence of rapamycin. With its increased photon intensity, red-shifted light output, and good spectral resolution (approximately 85 nm), BRET3 shows improved spatial and temporal resolution for measuring intracellular events in single cells and in living small animal models. The development of further BRET3-based assays will allow imaging of protein-protein interactions using a single assay directly scalable from intact living cells to small living subjects, allowing accelerated drug discovery.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.