• J Neuroimaging · Jul 2004

    Review

    Pathogenesis of brain and spinal cord atrophy in multiple sclerosis.

    • Alireza Minagar, Eduardo Gonzalez Toledo, J Steven Alexander, and Roger E Kelley.
    • Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA. aminag@lsuhsc.edu
    • J Neuroimaging. 2004 Jul 1; 14 (3 Suppl): 5S-10S.

    AbstractFor more than a century, multiple sclerosis was viewed as a disease process characterized by oligodendrocyte and myelin loss, and research into the pathogenesis of multiple sclerosis was mainly focused on the mechanisms of inflammation. However, with development of more sophisticated neuroimaging and molecular biology techniques, attention has shifted to new aspects of pathogenesis of multiple sclerosis: axonal loss and neurodegeneration. Evidence is increasing that tissue destruction, primarily axonal loss and neurodegeneration, is a key element in the pathogenesis of multiple sclerosis. In addition, it is now known that brain and spinal cord atrophy begins early in the disease process of multiple sclerosis and advances relentlessly throughout the course of the disease. Cumulative data suggest that axonal loss is the major determinant of progressive neurologic disability in patients with multiple sclerosis. Magnetic resonance imaging and magnetic resonance spectroscopy in patients with multiple sclerosis for < 5 years indicate brain atrophy and loss of axonal integrity. Neurodegeneration and axonal loss in patients with multiple sclerosis are initially accompanied by a local response from oligodendrocyte progenitor cells and some remyelination. However, these repair mechanisms eventually fail, and patients typically develop generalized brain atrophy, cognitive decline, and permanent disability. Although the exact mechanisms underlying central nervous system atrophy in patients with multiple sclerosis are largely unknown, evidence exists that atrophy may represent an epiphenomenon related to the effects of dynamic inflammation within the central nervous system, including demyelination, axonal injury, neuronal loss, Wallerian degeneration, and possibly iron deposition. This article summarizes the potential mechanisms involved in central nervous system atrophy in patients with multiple sclerosis.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…