• Am J Sports Med · Feb 2009

    Medial collateral ligament injuries and subsequent load on the anterior cruciate ligament: a biomechanical evaluation in a cadaveric model.

    • Michael J Battaglia, Mark W Lenhoff, John R Ehteshami, Stephen Lyman, Matthew T Provencher, Thomas L Wickiewicz, and Russell F Warren.
    • Shoulder and Sports Orthopedic Surgery, United States Naval Academy, 250 Wood Road, Annapolis, MD 21402, USA. ttags@yahoo.com
    • Am J Sports Med. 2009 Feb 1; 37 (2): 305-11.

    BackgroundNumerous studies have documented the effect of complete medial collateral ligament injury on anterior cruciate ligament loads; few have addressed how partial medial collateral ligament disruption affects knee kinematics.PurposeTo determine knee kinematics and subsequent change in anterior cruciate ligament load in a partial and complete medial collateral ligament injury model.Study DesignControlled laboratory study.MethodsTen human cadaveric knees were sequentially tested by a robot with the medial collateral ligament intact, in a partial injury model, and in a complete injury model with a universal force-moment sensor measuring system. Tibial translation, rotation, and anterior cruciate ligament load were measured under 3 conditions: anterior load (125 N), valgus load (10 N x m), and internal-external rotation torque (4 N x m; all at 0 degrees and 30 degrees of flexion).ResultsAnterior and posterior translation did not statistically increase with a partial or complete medial collateral ligament injury at 0 degrees and 30 degrees of flexion. In response to a 125 N anterior load, at 0 degrees , the anterior cruciate ligament load increased 8.7% (from 99.5 to 108.2 N; P = .006) in the partial injury and 18.3% (117.7 N; P < .001) in the complete injury; at 30 degrees , anterior cruciate ligament load was increased 12.3% (from 101.7 to 114.2 N; P = .001) in the partial injury and 20.6% (122.7 N; P < .001) in the complete injury. In response to valgus torque (10 N x m) at 30 degrees , anterior cruciate ligament load was increased 55.3% (30.4 to 47.2 N; P = .044) in the partial injury model and 185% (86.8 N; P = .001) in the complete injury model. In response to internal rotation torque (4 N.m) at 30 degrees , anterior cruciate ligament load was increased 29.3% (27.6 to 35.7 N; P = .001) in the partial injury model and 65.2% (45.6 N; P < .001) in the complete injury model. The amount of internal rotation at 30 degrees of flexion was significantly increased in the complete injury model (22.8 degrees ) versus the intact state (19.5 degrees ; P < .001).ConclusionPartial and complete medial collateral ligament tears significantly increased the load on the anterior cruciate ligament. In a partial tear, the resultant load on the anterior cruciate ligament was increased at 30 degrees of flexion and with valgus load and internal rotation torque.Clinical RelevancePatients may need to be protected from valgus and internal rotation forces after anterior cruciate ligament reconstruction in the setting of a concomitant partial medial collateral ligament tear. This information may help clinicians understand the importance of partial injuries of the medial collateral ligament with a combined anterior cruciate ligament injury complex.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.