• Oncogene · Mar 2011

    Opposite functions of HIF-α isoforms in VEGF induction by TGF-β1 under non-hypoxic conditions.

    • K S Chae, M J Kang, J H Lee, B K Ryu, M G Lee, N G Her, T K Ha, J Han, Y K Kim, and S G Chi.
    • School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
    • Oncogene. 2011 Mar 10; 30 (10): 1213-28.

    AbstractTransforming growth factor (TGF)-β1 has biphasic functions in prostate tumorigenesis, having a growth-inhibitory effect in the early stages, but in the late stages promoting tumor angiogenesis and metastasis. We demonstrate here that tumor-producing TGF-β1 induces vascular endothelial growth factor (VEGF) in prostate cancer cells, and hypoxia-inducible factor (HIF)-1α and HIF-2α has opposite functions in TGF-β1 regulation of VEGF expression under non-hypoxic conditions. The promoter response of VEGF to TGF-β1 was upregulated by the transfection of HIF-2α or siHIF-1α but downregulated by HIF-1α and siHIF-2α. Both HIF-1α and HIF-2α were induced by TGF-β1 at mRNA and protein levels, however, their nuclear translocation was differentially regulated by TGF-β1, suggesting its association with their opposite effects. VEGF induction by TGF-β1 occurred in a Smad3-dependent manner, and the Smad-binding element 2 (SBE2, -992 to -986) and hypoxia response element (-975 to -968) in the VEGF promoter were required for the promoter response to TGF-β1. Smad3 cooperated with HIF-2α in TGF-β1 activation of VEGF transcription and Smad3 binding to the SBE2 site was greatly impaired by knockdown of HIF-2α expression. Moreover, the VEGF promoter response to TGF-β1 was synergistically elevated by co-transfection of Smad3 and HIF-2α but attenuated by HIF-1α in a dose-dependent manner. Additionally, TGF-β1 was found to increase the stability of VEGF transcript by facilitating the cytoplasmic translocation of a RNA-stabilizing factor HuR. Collectively, our data show that tumor-producing TGF-β1 induces VEGF at the both transcription and post-transcriptional levels through multiple routes including Smad3, HIF-2α and HuR. This study thus suggests that autocrine TGF-β1 production may contribute to tumor angiogenesis via HIF-2α signaling under non-hypoxic conditions, providing a selective growth advantage for prostate tumor cells.© 2011 Macmillan Publishers Limited

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.