• Am. J. Physiol. Endocrinol. Metab. · Sep 2019

    Comparative Study

    A comparative study of mitochondrial respiration in circulating blood cells and skeletal muscle fibers in women.

    • Shannon Rose, Eugenia Carvalho, Eva C Diaz, Matthew Cotter, Sirish C Bennuri, Gohar Azhar, Richard E Frye, Sean H Adams, and Elisabet Børsheim.
    • Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
    • Am. J. Physiol. Endocrinol. Metab. 2019 Sep 1; 317 (3): E503-E512.

    AbstractSkeletal muscle mitochondrial respiration is thought to be altered in obesity, insulin resistance, and type 2 diabetes; however, the invasive nature of tissue biopsies is an important limiting factor for studying mitochondrial function. Recent findings suggest that bioenergetics profiling of circulating cells may inform on mitochondrial function in other tissues in lieu of biopsies. Thus, we sought to determine whether mitochondrial respiration in circulating cells [peripheral blood mononuclear cells (PBMCs) and platelets] reflects that of skeletal muscle fibers derived from the same subjects. PBMCs, platelets, and skeletal muscle (vastus lateralis) samples were obtained from 32 young (25-35 yr) women of varying body mass indexes. With the use of extracellular flux analysis and high-resolution respirometry, mitochondrial respiration was measured in intact blood cells as well as in permeabilized cells and permeabilized muscle fibers. Respiratory parameters were not correlated between permeabilized muscle fibers and intact PBMCs or platelets. In a subset of samples (n = 12-13) with permeabilized blood cells available, raw measures of substrate (pyruvate, malate, glutamate, and succinate)-driven respiration did not correlate between permeabilized muscle (per mg tissue) and permeabilized PBMCs (per 106 cells); however, complex I leak and oxidative phosphorylation coupling efficiency correlated between permeabilized platelets and muscle (Spearman's ρ = 0.64, P = 0.030; Spearman's ρ = 0.72, P = 0.010, respectively). Our data indicate that bioenergetics phenotypes in circulating cells cannot recapitulate muscle mitochondrial function. Select circulating cell bioenergetics phenotypes may possibly inform on overall metabolic health, but this postulate awaits validation in cohorts spanning a larger range of insulin resistance and type 2 diabetes status.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.