• Chem. Res. Toxicol. · Apr 2003

    Effect of nitroreduction on the alkylating reactivity and cytotoxicity of the 2,4-dinitrobenzamide-5-aziridine CB 1954 and the corresponding nitrogen mustard SN 23862: distinct mechanisms of bioreductive activation.

    • Nuala A Helsby, S James Wheeler, Frederik B Pruijn, Brian D Palmer, Shangjin Yang, William A Denny, and William R Wilson.
    • Auckland Cancer Society Research Centre, The University of Auckland, Private Bag 92019, Auckland, New Zealand. n.helsby@auckland.ac.nz
    • Chem. Res. Toxicol. 2003 Apr 1; 16 (4): 469-78.

    AbstractThe dinitrobenzamide aziridine CB 1954 (1) and its nitrogen mustard analogue SN 23862 (6) are prodrugs that are activated by enzymatic nitroreduction in tumors. Bioactivation of 1 is considered to be due to reduction of its 4-nitro group to the hydroxylamine and subsequent formation of the N-acetoxy derivative; this acts as a reactive center, in concert with the aziridine moiety, to provide a bifunctional DNA cross-linking agent (Knox model). It is currently unclear whether bioactivation of 6 occurs by the same mechanism or results from the electronic effects of nitroreduction on reactivity of the nitrogen mustard moiety. To discriminate between these mechanisms, we have synthesized the hydroxylamine and amine derivatives of 1 and 6, plus related compounds, and determined their alkylating reactivities in aqueous solution, using LC/MS to identify reaction pathways. The relationships between substituent electronic effects, reactivity, and cytotoxicity were determined using the UV4 cell line, which is defective in nucleotide excision repair (thus avoiding differences in repair kinetics). Alkylating reactivity correlated with the electron-donating character of the ortho or para substituent in the case of the mustards, with a less marked electronic effect for the aziridines. Importantly, there was a highly significant linear relationship between cytotoxic potency and alkylating reactivity in both the aziridine and the mustard series, with the notable exception of 4, the 4-hydroxylamine of 1, which was 300-fold more toxic than predicted by this relationship. This demonstrates that the high potency of 4 does not result from activation of the aziridine ring, supporting the Knox model. The single-step bioactivation of 6, to amino or hydroxylamine metabolites with similar potency to 4, is a potential advantage in the use of dinitrobenzamide mustards as prodrugs for activation by nitroreductases.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.