• Experimental physiology · Feb 2009

    Review

    Congenital nephrogenic diabetes insipidus: what can we learn from mouse models?

    • Michelle Boone and Peter M T Deen.
    • Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
    • Exp. Physiol. 2009 Feb 1; 94 (2): 186-90.

    AbstractAquaporins (AQPs) are central players in mammalian physiology, allowing efficient water transport through cellular membranes. To date, 13 different aquaporins have been identified in mammals (AQP0-AQP12). Knocking out genes in mice and identification of mutations in the human genes provided important information on the role of AQPs in normal physiology. While the physiological role of many AQPs only becomes clear when the putative function is challenged, the lack of AQP2 directly results in a disease phenotype. Aquaporin 2 is highly expressed in the principal cells of the renal collecting duct, where it shuttles between intracellular storage vesicles and the apical membrane. Upon hypernatraemia or hypovolaemia, the antidiuretic hormone vasopressin (AVP) is released from the pituitary into blood and binds to its type 2 receptor on renal principal cells. This initiates a cAMP signalling cascade resulting in the translocation of AQP2-bearing vesicles to the apical membrane. Subsequently, pro-urinary water reabsorption and urine concentration occurs. This process is reversed by a reduction in circulating AVP levels, which is obtained with the establishment of isotonicity. In humans, mutations in the AQP2 gene cause congenital nephrogenic diabetes insipidus (NDI), a disorder characterized by an inability to concentrate urine in response to vasopressin. Until the recent development of several congenital NDI mouse models, our knowledge on AQP2 regulation was primarily based on in vitro studies. This review focuses on the similarities between the in vitro and in vivo studies and discusses new insights into congenital NDI obtained from the mouse models.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.