• Int. J. Radiat. Oncol. Biol. Phys. · Sep 2017

    Evaluating Which Dose-Function Metrics Are Most Critical for Functional-Guided Radiation Therapy.

    • Austin M Faught, Tokihiro Yamamoto, Richard Castillo, Edward Castillo, Jingjing Zhang, Moyed Miften, and Yevgeniy Vinogradskiy.
    • Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado. Electronic address: austin.faught@ucdenver.edu.
    • Int. J. Radiat. Oncol. Biol. Phys. 2017 Sep 1; 99 (1): 202-209.

    PurposeFour-dimensional (4D) computed tomography (CT) ventilation imaging is increasingly being used to calculate lung ventilation and implement functional-guided radiation therapy in clinical trials. There has been little exhaustive work evaluating which dose-function metrics should be used for treatment planning and plan evaluation. The purpose of our study was to evaluate which dose-function metrics best predict for radiation pneumonitis (RP).Methods And MaterialsSeventy lung cancer patients who underwent 4D CT imaging and pneumonitis grading were assessed. Pretreatment 4D CT scans of each patient were used to calculate ventilation images. We evaluated 3 types of dose-function metrics that combined the patient's 4D CT ventilation image and treatment planning dose distribution: (1) structure-based approaches; (2) image-based approaches using the dose-function histogram; and (3) nonlinear weighting schemes. Log-likelihood methods were used to generate normal tissue complication probability models predicting grade 3 or higher (ie, grade 3+) pneumonitis for all dose-function schemes. The area under the curve (AUC) was used to assess the predictive power of the models. All techniques were compared with normal tissue complication probability models based on traditional, total lung dose metrics.ResultsThe most predictive models were structure-based approaches that focused on the volume of functional lung receiving ≥20 Gy (AUC, 0.70). Probabilities of grade 3+ RP of 20% and 10% correspond to V20 (percentage of volume receiving ≥20 Gy) to the functional subvolumes of 26.8% and 9.3%, respectively. Imaging-based analysis with the dose-function histogram and nonlinear weighted ventilation values yielded AUCs of 0.66 and 0.67, respectively, when we evaluated the percentage of functionality receiving ≥20 Gy. All dose-function metrics outperformed the traditional dose metrics (mean lung dose, AUC of 0.55).ConclusionsA full range of dose-function metrics and functional thresholds was examined. The calculated AUC values for the most predictive functional models occupied a narrow range (0.66-0.70), and all showed notable improvements over AUC from traditional lung dose metrics (0.55). Identifying the combinations most predictive of grade 3+ RP provides valuable data to inform the functional-guided radiation therapy process.Copyright © 2017 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.