-
- Thomas Lefèvre.
- Hôpital Jean-Verdier (AP-HP), Department of Forensic Science and Medicine, F-93140 Bondy, France; IRIS - Institut de recherches interdisciplinaires sur les enjeux sociaux (UMR 8156-723), Bobigny, France. Electronic address: thomas.lefevre@univ-paris13.fr.
- J Forensic Leg Med. 2018 Jul 1; 57: 1-6.
AbstractIn less than a decade, big data in medicine has become quite a phenomenon and many biomedical disciplines got their own tribune on the topic. Perspectives and debates are flourishing while there is a lack for a consensual definition for big data. The 3Vs paradigm is frequently evoked to define the big data principles and stands for Volume, Variety and Velocity. Even according to this paradigm, genuine big data studies are still scarce in medicine and may not meet all expectations. On one hand, techniques usually presented as specific to the big data such as machine learning techniques are supposed to support the ambition of personalized, predictive and preventive medicines. These techniques are mostly far from been new and are more than 50 years old for the most ancient. On the other hand, several issues closely related to the properties of big data and inherited from other scientific fields such as artificial intelligence are often underestimated if not ignored. Besides, a few papers temper the almost unanimous big data enthusiasm and are worth attention since they delineate what is at stakes. In this context, forensic science is still awaiting for its position papers as well as for a comprehensive outline of what kind of contribution big data could bring to the field. The present situation calls for definitions and actions to rationally guide research and practice in big data. It is an opportunity for grounding a true interdisciplinary approach in forensic science and medicine that is mainly based on evidence.Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.