-
IEEE Trans Med Imaging · Mar 2003
Comparative StudyMultiresolution fMRI activation detection using translation invariant wavelet transform and statistical analysis based on resampling.
- Gholam-Ali Hossein-Zadeh, Hamid Soltanian-Zadeh, and Babak A Ardekani.
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA. ghzadeh@ut.ac.ir
- IEEE Trans Med Imaging. 2003 Mar 1; 22 (3): 302-14.
AbstractA new method is proposed for activation detection in event-related functional magnetic resonance imaging (fMRI). The method is based on the analysis of selected resolution levels (a subspace) in translation invariant wavelet transform (TIWT) domain. Using a priori knowledge about the activation signal and trends, we analyze their power in different resolution levels in TIWT domain and select an optimal set of resolution levels. A randomization-based statistical test is then applied in the wavelet domain for activation detection. This approach suppresses the effects of trends and enhances the detection sensitivity. In addition, since TIWT is insensitive to signal translations, the power analysis is robust with respect to signal shifts. The randomization test alleviates the need for assumptions about fMRI noise. The method has been applied to simulated and experimental fMRI datasets. Comparisons have been made between the results of the proposed method, a similar method in the time domain and the cross-correlation method. The proposed method has shown superior sensitivity compared to the other methods.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.