-
IEEE Trans Med Imaging · Mar 2004
Comparative StudyDenoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing.
- Alle Meije Wink and Jos B T M Roerdink.
- Institute for Mathematics and Computing Science, University of Groningen, NL-9700 AV Groningen, The Netherlands. wink@cs.rug.nl
- IEEE Trans Med Imaging. 2004 Mar 1; 23 (3): 374-87.
AbstractWe present a general wavelet-based denoising scheme for functional magnetic resonance imaging (fMRI) data and compare it to Gaussian smoothing, the traditional denoising method used in fMRI analysis. One-dimensional WaveLab thresholding routines were adapted to two-dimensional (2-D) images, and applied to 2-D wavelet coefficients. To test the effect of these methods on the signal-to-noise ratio (SNR), we compared the SNR of 2-D fMRI images before and after denoising, using both Gaussian smoothing and wavelet-based methods. We simulated a fMRI series with a time signal in an active spot, and tested the methods on noisy copies of it. The denoising methods were evaluated in two ways: by the average temporal SNR inside the original activated spot, and by the shape of the spot detected by thresholding the temporal SNR maps. Denoising methods that introduce much smoothness are better suited for low SNRs, but for images of reasonable quality they are not preferable, because they introduce heavy deformations. Wavelet-based denoising methods that introduce less smoothing preserve the sharpness of the images and retain the original shapes of active regions. We also performed statistical parametric mapping on the denoised simulated time series, as well as on a real fMRI data set. False discovery rate control was used to correct for multiple comparisons. The results show that the methods that produce smooth images introduce more false positives. The less smoothing wavelet-based methods, although generating more false negatives, produce a smaller total number of errors than Gaussian smoothing or wavelet-based methods with a large smoothing effect.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.