• Med Phys · Jul 2011

    Dosimetric impact of image artifact from a wide-bore CT scanner in radiotherapy treatment planning.

    • Vincent Wu, Matthew B Podgorsak, Tuan-Anh Tran, Harish K Malhotra, and Iris Z Wang.
    • Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
    • Med Phys. 2011 Jul 1; 38 (7): 4451-63.

    PurposeTraditional computed tomography (CT) units provide a maximum scan field-of-view (sFOV) diameter of 50 cm and a limited bore size, which cannot accommodate a large patient habitus or an extended simulation setup in radiation therapy (RT). Wide-bore CT scanners with increased bore size were developed to address these needs. Some scanners have the capacity to reconstruct the CT images at an extended FOV (eFOV), through data interpolation or extrapolation, using projection data acquired with a conventional sFOV. Objects that extend past the sFOV for eFOV reconstruction may generate image artifacts resulting from truncated projection data; this may distort CT numbers and structure contours in the region beyond the sFOV. The purpose of this study was to evaluate the dosimetric impact of image artifacts from eFOV reconstruction with a wide-bore CT scanner in radiotherapy (RT) treatment planning.MethodsTesting phantoms (i.e., a mini CT phantom with equivalent tissue inserts, a set of CT normal phantoms and anthropomorphic phantoms of the thorax and the pelvis) were used to evaluate eFOV artifacts. Reference baseline images of these phantoms were acquired with the phantom centrally positioned within the sFOV. For comparison, the phantoms were then shifted laterally and scanned partially outside the sFOV, but still within the eFOV. Treatment plans were generated for the thoracic and pelvic anthropomorphic phantoms utilizing the Eclipse treatment planning system (TPS) to study the potential effects of eFOV artifacts on dose calculations. All dose calculations of baseline and test treatment plans were carried out using the same MU.ResultsResults show that both body contour and CT numbers are altered by image artifacts in eFOV reconstruction. CT number distortions of up to -356 HU for bone tissue and up to 323 HU for lung tissue were observed in the mini CT phantom. Results from the large body normal phantom, which is close to a clinical patient size, show average CT number changes of up to -49 HU. Wider distribution (i.e., standard deviation) of the HU values was seen when the phantom was placed at more than 2.8 cm beyond the 50 cm sFOV. Anthropomorphic phantom studies with several standard beam configurations show that body contour distortion causes tumor dose calculation reduction of 3.0 and 1.9% for 6 and 23 MV x-rays, respectively, when not accounting for tissue heterogeneities during dose computation. When heterogeneity correction is used in planning, the competing effects of the body contour distortion and the CT number distortion cause a smaller error in tumor dose calculation. Less than 0.9% error in calculated dose was observed in volumetric modulated are therapy (VMAT) treatment plans.ConclusionsThe image artifacts from eFOV reconstruction alter the CT numbers and body contours of the imaged objects, which has the potential to produce inaccuracies in dose calculations during radiotherapy treatment planning. The radiation therapy team should be aware of these image artifacts and their effects on target dose calculations during CT simulation as well as treatment planning.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.